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ABSTRACT
The comparative analyses of current knowledge of the diversity of aquaporins in angiosperms are presented in the review. 
Their structure, coding, and diversity of regulatory pathways are considered. Special attention is paid to aquaporins responsible 
for water transport. Data on the participation of various aquaporins in plant adaptation to abiotic factors causing hydration and 
dehydration are presented. The participation of aquaporins in the processes of plant growth and development from germination 
to seed formation are considered in sufficient detail. The data presented in the review indicate the main directions of further 
research important for elucidation of the mechanisms involved in regulation of aquaporins, mainly responsive for transmem-
brane water transport. The special significance of the studies at the omics level — transcriptomic and proteomic is noted. 
They will allow identifying the specificity of aquaporin isoforms involved in the development of the adaptive response or 
at different stages of plant development.
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Роль транспортирующих воду аквапоринов 
подсемейств PIP и TIP в онтогенезе растений 
и адаптации к стрессовым факторам
Г.В. Данелия, В.В. Емельянов, М.Ф. Шишова
Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

АННОТАЦИЯ
В обзоре приведен анализ современных представлений о многообразии аквапоринов у покрытосеменных растений. 
Рассмотрено их строение, кодирование и разнообразие путей регуляции. Особое внимание уделено аквапоринам, от-
ветственным за транспорт воды. Приведены данные об участии различных изоформ аквапоринов в адаптации расте-
ний к абиотическим факторам, вызывающим гидратацию и дегидратацию. Достаточно подробно рассмотрены данные 
об участии аквапоринов в процессах роста и развития растений от прорастания до формирования семян. Представ-
ленные в обзоре данные указывают на основные направления исследований по расшифровке механизмов регуляции 
работы аквапоринов, основная функция которых заключается в трансмембранном переносе воды. Отмечено особое 
значение уже начатых исследований на системном транскриптомном и протеомном уровнях. Они позволят выявить 
специфичность изоформ аквапоринов, участвующих в развитии адаптационного ответа или на различных этапах раз-
вития растений.

Ключевые слова: аквапорины; адаптация; стресс; рост; развитие.
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INTRODUCTION
The ability to create and maintain gradients of ions 

and water-soluble bioactive compounds between the in-
ternal contents and the environment is the fundamen-
tal property of living cells. The implementation of this 
property is closely related to the selective permeability 
of many compounds, ions, and water, which is driven by 
the properties of biological membranes. It is very impor-
tant to study water transport mechanisms, because the 
extra- and intracellular environments are aqueous. Bio-
logical membranes are lipid bilayers having intrinsic pas-
sive permeability to water. In various models, it has been 
demonstrated that the intensity of passive H2O flux may 
vary within the range of 5–15 × 10–3 cm/s, depending on 
the lipid composition of the membrane, the asymmetry 
of the lipid bilayer, and other factors [1–3]. However, the 
vital activity of any cell is closely related to changes in 
the intensity of water fluxes passing through membranes 
(including a sharp increase), which are necessary for os-
moregulation and cannot be fully explained by the pas-
sive permeability of the lipid bilayer.

Aquaporins are a large family of membrane trans-
port proteins that function as selective channels for the 
transport of water and other molecules, including gases, 
through cell membranes along a concentration gradient 
in both directions [4]. Aquaporins are characterized by 
a high transport rate that exceeds that of many other 
transporters, including ion channels. In some cases, the 
transport rate may reach more than a billion water mo-
lecules per second [5]. Aquaporins belong to the family 
of highly conserved major intrinsic proteins (MIP). Repre-
sentatives of this family have been identified in all living 
organisms, except for thermophilic archaea and several 
bacteria [6].

The greatest diversity of aquaporins is typical of the 
green plants (Viridiplantae), especially the higher plants 
(Embryophyta). Embryophyta are characterized by the 
highest number of aquaporin isoforms, which resulted 
from polyploidization that occurred during the evolution 
of this taxon [7]. The importance of this phenomenon is 
confirmed by the fact that at least 35% of existing flower-
ing species are descendants of polyploid species [8, 9]. 
The subsequent conservation of many genes encod-
ing these transporters is due to the need to effectively 
regulate water homeostasis under changing environ-
mental conditions in an attached lifestyle [6, 10]. A total 
of 35 genes encoding aquaporins were identified in the 
genome of Arabidopsis, 33 in rice, 34 in orange, 41 each 
in maize and sorghum, 47 in tomato, 50 in banana, 55 in 
poplar, 66 in soybean, 71 in cotton, and 120 in rapeseed 
[6, 11, 12].

In recent years, a substantial body of research has 
been accumulated on the physiological significance of 
aquaporins during development and adaptation to stress 

factors [10, 13–16]. However, the mechanisms underly-
ing these processes are not fully elucidated. This review 
aims to provide a comparative analysis of the primary 
mechanisms of aquaporin involvement in the develop-
ment and adaptation to abiotic stress factors. A com-
parative analysis of adaptation to dehydration and growth 
underlying processes are of particular interest.

HISTORY OF DISCOVERY AND 
CLASSIFICATION OF AQUAPORINS

As early as 1953, the transport of water across bio-
logical membranes through specialized pores was hy-
pothesized [17]. However, this assumption had not been 
experimentally confirmed until 1970, when the presence 
of such pores was observed in human erythrocytes [18]. 
In 1988, a protein with a molecular mass of 28 kDa was 
isolated from erythrocytes and renal tubules (CHIP28, 
AQP1), then purified, and partially characterized [19]. 
The genes of these proteins were cloned, and their transport 
function was demonstrated by heterologous expression 
of the corresponding genes in Xenopus oocytes [20, 21]. 
In plants, the first aquaporin was identified as Nodulin 26 
(GmNOD26) in rhizobial tubercles of soybean [22]. Further 
studies of plant aquaporins have facilitated the detailed 
characterization of many membrane transporters and 
have resulted in a substantial expansion of our under-
standing of the water regime.

In plants, including algae and higher plants, such 
as mosses, lycopodium, dicotyledons and monocotyle-
dons, there are up to eight subfamilies of aquaporins. 
These subfamilies include plasma membrane intrinsic 
proteins (PIPs), tonoplast intrinsic proteins (TIPs), nod-
ulin26-like membrane proteins (NIPs), small basic in-
trinsic proteins (SIPs), uncharacterized X intrinsic pro-
teins (XIPs), large integral proteins, GlpF-like intrinsic 
proteins (GIPs), and hybrid intrinsic proteins [10, 23]. 
Proteins belonging to the latter two groups are exclusive-
ly present in prokaryotes and certain lower plants, and 
they have been completely lost in seed plants. The num-
ber of isoforms in these groups is minimal (1–3). In green 
algae, homologs of the PIP and GIP families have been 
identified and classified into the MIP A-E subclasses [14]. 
The analysis of 82 plants (5200 aquaporin isoforms) indi-
cates that the PIP subfamily (1807 isoforms) is the most 
abundant by the number of isoforms. The TIPs and NIPs 
subfamilies exhibit a high degree of similarity in terms of 
isoform diversity [24].

The general scheme of intracellular localization of 
aquaporins in plants is illustrated in Figure 1. It should be 
noted that members of different families can be identified 
or their localization in other cell membranes can be pre-
dicted, independent of their initial localization. Contrary 
to the prevailing view that mitochondrial membranes 
contain no aquaporins [14], a recent proteomic analysis 
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Fig. 1. Cellular localization of aquaporins. PIP, TIP, NIP, and XIP aquaporins are localized primarily in the plasma membrane and are present 
on the entire cell surface. SIP aquaporins and some NIP aquaporins were found in the endoplasmic reticulum (ЭПС) membrane. TIP aquaporins 
are localized in the tonoplast, the vacuole membrane. Some PIP and TIP aquaporins were predicted to be localized in the inner chloroplast 
membrane and the thylakoid membrane. A number of TIP aquaporins were found in mitochondrial (МТХ) membranes
Рис. 1. Клеточная локализация аквапоринов. PIP-, TIP-, NIP- и XIP-аквапорины локализуются преимущественно в плазматической 
мембране и присутствуют на всей поверхности клетки. SIP-аквапорины и некоторые NIP-аквапорины были обнаружены в мембране 
эндоплазматической сети (ЭПС). TIP-аквапорины локализуются в тонопласте — мембране вакуоли. Было предсказано, что не-
которые PIP- и TIP-аквапорины локализуются во внутренней мембране хлоропласта и мембране тилакоидов. Ряд представителей 
TIP-аквапоринов выявлен в мембранах митохондрий (МТХ)
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Nucleus

Vacuole

CytoplasmER

Plastid

has identified these proteins, presumably belonging to 
the TIP subfamily [25, 26].

The aforementioned scheme appears to be inconclu-
sive due to the potential variability in the distribution of 
aquaporins within cell membranes across diverse shoot 
and root tissues. This variability may also depend on the 
developmental stage of the plant organism and the im-
pact of stress factors on the plant [24, 27]. This phenom-
enon is exemplified by the localization and intracellular 
redistribution of representatives of the PIP and TIP aqua-
porin subfamilies.

STRUCTURE AND TRANSPORT 
PROPERTIES OF AQUAPORINS

Like all members of the MIP superfamily, aquaporins 
possess the following structural characteristics (Fig. 2):

• Six transmembrane alpha-helical domains [6];
• Localization of N- and C-termini in the cytosol; and
• Five loops connecting transmembrane domains 

(A–E: A, C, and E face outward, whereas B and D face 
into the cytosol).

The classical structure of aquaporins (six transmem-
brane domains) is thought to have arisen from a tan-
dem intragenic duplication of the coding sequence for a 

protein with three transmembrane domains, which may 
have functioned as a homodimer [10].

The assembly of four monomers of aquaporins results 
in the formation of homo- or heterotetrameric complex-
es [4]. Each monomer of the complex functions as an 
independent water channel having an activity determined 
by its amino acid composition, interaction with neigh-
boring monomers, post-translational modification, and 
the action of various signaling molecules [10, 27]. Two 
conserved loops (cytoplasmic loop B and outer loop E) 
contain the NPA-motif (Asn-Pro-Ala), which is critical for 
aquaporin functionality. This motif regulates the permea-
bility of the transporter to substrates, including water [4]. 
Loops B and E form half-helices that are directed inside 
the membrane and converge in the middle to form a pore. 
At the point of convergence, there are two NPA motifs 
that, together with four amino acid (AA) residues located 
on the apoplastic side of the second (Phe81) and fifth 
(His210) transmembrane helices and within the E loop 
(Thr, Arg; known as the aromatic/arginine [ar/R] filter), 
contribute to the determination of the substrate specific-
ity of the pore [10]. Another distinguishing trait of aqua-
porins is the presence of AEF (Ala-Glu-Phe) or AEFXXT 
(Ala-Glu-Phe — any AK — any AA-Thr) motifs in the 
N-terminal domain [6].
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Fig. 2. The structure of plant aquaporin. Transmembrane domains (1–6), loops (A–E), NPA (Asn-Pro-Ala) motifs are located in loops B and E. 
Posttranslational modification is possible as a result of changes in phosphorylation, depends on pH, Ca2+ ions, and the presence of reactive 
oxygen species (ROS). Dark ellipse — aromatic/arginine filter — ar/R filter (from [4], with alterations)
Рис. 2. Структура аквапорина растений. Трансмембранные домены (1–6), петли (А–Е), мотивы NPA (Asn-Pro-Ala) находятся в пет-
лях B и E. Посттрансляционная модификация возможна в результате изменения фосфорилирования, зависит от рН, ионов Са2+, 
а также присутствия активных форм кислорода (ROS). Темный элипс — ароматический/аргининовый фильтр — ar/R filter 
(по: [4], с изменениями)

Phosphorylation / dephos-
phorylation

Table 1. Transport functions of aquaporin subfamilies in angiosperms
Таблица 1. Транспортные функции подсемейств аквапоринов покрытосеменных растений

Aquaporin subfamily Transport specificity according to [10]

PIP (plasma membrane intrinsic proteins) Transport of water, hydrogen peroxide, and carbon dioxide 
(different functions in different members of the subfamily)

TIP (tonoplast intrinsic proteins) Transport of water, hydrogen peroxide, ammonium, and urea

NIP (Nodulin26-like intrinsic proteins)
Permeable to a wide range of substrates, including both beneficial and toxic 

metalloids, but poorly permeable to water 
(different functions in different members of the subfamily)

SIP (small basic intrinsic proteins) Low water permeability

XIPs (uncharacterized/X intrinsic proteins) Low water permeability

The above data indicate the complex structure of the 
channel, which determines its permeability. Although 
aquaporins were originally characterized as water trans-
porters, this property is not exhibited by all groups of 
plant aquaporins. Furthermore, variations in substrate 
permeability can be observed within the same subfamily. 
This phenomenon has been demonstrated for PIP [10], 
TIP, and NIP aquaporins [28], as well as SIP [29] and 
XIP aquaporins [30]. The peculiarities of the transport 
function of angiospermous aquaporins are presented 
in Table 1.

The following model systems are used to determine 
the transport properties of aquaporins with respect to 
specific substrates: (1) isolated tissues (e.g., leaf discs); 
(2) protoplasts; (3) membrane vesicular fractions isolated 
from cells of wild-type or transgenic plants with recom-
binant aquaporins; (4) Xenopus clawed frog oocytes; 
(5) yeast cells; (6) liposomes with purified and embedded 

aquaporin proteins (proteoliposomes) or flat lipid bilayers 
[10, 31]. However, data obtained for the same protein in 
different model systems may differ [32]. Therefore, cau-
tion should be exercised when transferring results ob-
tained on proteoliposomes, oocytes, or yeast to in planta 
conditions.

AQUAPORIN ENCODING IN DIFFERENT 
PLANT SPECIES

As previously mentioned, Viridiplantae are distin-
guished by a substantial number of genes that encode 
aquaporins. Table 2 presents examples of aquaporin 
encoding from five primary subfamilies across diverse 
species of higher plants. It is evident that the number 
of aquaporin genes may vary considerably even among 
closely related species. The presence of 120 genes 
in rapeseed, in contrast to the 35 genes observed in 
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Table 2. Coding of aquaporins in some species of angiosperms
Таблица 2. Кодирование аквапоринов у некоторых видов цветковых растений

Plant species

To
ta

l A
QP

 g
en

es

PI
P1

PI
P2

To
ta

l P
IP

TIP
1

TIP
2

TIP
3

TIP
4

TIP
5

To
ta

l T
IP

NI
P1

NI
P2

NI
P3

NI
P4

NI
P5

NI
P6

NI
P7

To
ta

l N
IP

SI
P1

SI
P2

To
ta

l S
IP

XIP
1

XIP
2

XIP
3

To
ta

l X
IP Refe-

rence*

Thale cress
Arabidopsis thaliana (L.) 
Heynh.

35 5 8 13 3 3 2 1 1 10 2 1 1 2 1 1 1 9 2 1 3 0 0 0 0 [34]

Rapeseed Brassica napus L. 
(canola)** 120 19 24 43 9 13 10 1 2 35 4 4 6 6 5 4 2 31 6 5 11 0 0 0 0 [11]

Brassica oleracea L. var. 
italica broccoli 65 8 15 23 6 7 5 1 1 20 2 2 3 5 3 2 1 18 2 2 4 0 0 0 0 [35]

Gossypium hirsutum L. 
upland cotton** 71 15 13 28 14 7 0 2 0 22 3 1 0 0 2 6 0 12 7 0 7 1 0 0 1 [36]

Populus trichocarpa black 
cottonwood Torr.& A.Gray 
ex Hook.

55 5 10 15 8 4 2 1 2 17 5 1 5 0 0 0 0 11 4 2 6 5 1 0 6 [37]

Glycine max (L.) Merr. soy 
bean 66 8 14 22 9 7 4 2 1 23 5 2 0 1 1 2 2 13 6 0 6 2 0 0 2 [38]

Cucumis melo L. melon 31 2 10 12 3 2 1 1 1 8 1 2 0 1 2 1 1 8 1 1 2 1 0 0 1 [25]

Daucus carota subsp. sativus 
(Hoffm.) Arcang garden carrot 47 6 8 14 4 5 2 1 2 14 6 1 1 2 2 1 0 13 2 2 4 2 0 0 2 [39]

Oryza sativa L. rice 33 3 8 11 2 2 2 3 1 10 4 2 3 1 0 0 0 10 1 1 2 0 0 0 0 [40]

Hordeum vulgare L. barley 40 5 14 19 2 3 2 3 1 11 2 3 2 1 0 0 0 8 1 1 2 0 0 0 0 [41]

Sorghum bicolor (L.) 
Moench sorghum 41 4 10 14 2 3 3 3 2 13 5 2 3 1 0 0 0 11 2 1 3 0 0 0 0 [42]

Zea mays L. maize 41 4 9 13 2 4 4 4 1 15 3 4 2 1 0 0 0 10 2 1 3 0 0 0 0 [12]

Note. The total number of genes encoding aquaporins or their subfamilies is shown in bold. *The authors of references cited here used 
not only the amino acid sequences of proteins, but also information about the genomes and transcriptomes of the plants studied, so the 
table specifically refers to genes encoding full-length proteins. **Evolutionarily young polyploids.
Примечание. Полужирным шрифтом выделено общее количество генов, кодирующих аквапорины или их подсемейства. 
*Авторы приведенных здесь статей использовали не только аминокислотные последовательности белков, но и информацию о ге-
номах и транскриптомах изучаемых растений, поэтому в таблице речь идет именно о генах, кодирующих полноразмерные белки. 
**Эволюционно молодые полиплоиды.

Arabidopsis, is particularly noteworthy. This increase 
in the number of aquaporin genes may be attributed to 
genome-wide duplication during evolution [11, 33].

It is hypothesized that PIP-aquaporins diverged into 
two highly conserved groups (PIP1 and PIP2) prior to the 
emergence of land plants. Although the number of groups 
did not increase further, a significant increase in the 
number of isoforms of PIP1 and PIP2 aquaporins was ob-
served [10]. A separate subfamily of TIP aquaporins was 
exclusively formed in land plants, with TIP2, TIP3, and 
TIP4 representing the predominant groups. Conversely, 
TIP1 and TIP5 appear as sister groups to TIP3 and TIP2, 
respectively, in flowering plants. Furthermore, the NIP 
subfamily is distinguished by its high degree of variability 

among different species. Another noteworthy phenom-
enon pertains to the encoding of the XIP subfamily. 
The loss of the entire XIP subfamily is a distinctive fea-
ture of monocotyledons and certain dicotyledons, as evi-
denced by many species within the Brassicaceae family.

AQUAPORIN REGULATION
In the last two decades, a lot of studies have been 

conducted to evaluate changes in the activity of plant 
aquaporins at the level of gene expression and protein 
accumulation as an adaptation to stress factors caus-
ing changes in water regime [15]. The most common 
subjects of analysis are factors leading to dehydration, 
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Analyzed gene, species and 
tissue specificity Acting factor Changes in transcript abundance Reference

FaPIP1;2, FaPIP2;1 
and FaTIP1;1 in the leaves 
of Festuca arundinacea Vill.

Drought

FaPIP1;2 and FaTIP1;1 expression decreased 
in both analyzed genotypes (with high and low drought tolerance); 
FaPIP2;1 expression decreased only in the genotype 
with high drought tolerance

[43]Salinization
FaPIP1;2 expression decreased in the high 
salt tolerance genotype; FaTIP1;1 expression increased 
in both genotypes

FpPIP1;2, FpPIP2;1 
and FpTIP1;2 in the leaves 
of F. pratensis Huds.

Low positive 
temperatures

Reduced expression in both genotypes 
(high and low cold tolerance)

TaPIP1-1, TaPIP1-4, 
TaPIP2-26
in the elongation zone of the 
third true leaf of 
Triticum aestivum L.;
TaPIP1-2, PutTaPIP2-2, 
TaPIP2-2C3, TaPIP2-3C1, 
TaPIP2-4C1, TaAQP2
in the mature zone of the 
second true leaf

Salinization

TaPIP2-26: an increase compared to the control at night.
TaPIP1-2: a decrease compared to the control during both day 
and at night.
PutTaPIP2-2: a decrease compared to the control during the day.
TaPIP2-3C1: a decrease compared to the control at night.
TaPIP2-4C1: an increase compared to the control during the day.
TaAQP2: a decrease compared to the control both during the day 
and at night

[44]

Table 3. Regulation of aquaporins at the transcriptional level under dessication stress
Таблица 3. Регуляция аквапоринов на транскрипционном уровне в условиях обезвоживания

such as drought, salinity, or high and low temperatures. 
However, the factors leading to excessive environmen-
tal moisture for land plants, including short-term stress 
conditions such as flooding and long-term stress condi-
tions for higher plants that have evolved to live in an 
aquatic environment, remains underexplored with re-
gard to the involvement of aquaporins in the response 
formation.

The above processes are accompanied by changes in 
water fluxes, both through the plasmalemma and across 
intracellular membranes. This assumption is consistent 
with the data on changes in the expression patterns of 
genes encoding various aquaporins, the accumulation 
spectra of the corresponding proteins, and the modifica-
tion of their functional activity. A large body of evidence 
points to the formation of a complex regulatory system 
at the transcriptional and post-translational levels. The 
mechanisms implemented at the protein level include 
phosphorylation and dephosphorylation, changes in pro-
tein reconstitution (Fig. 2), functional tetramerization of 
aquaporin monomers, and the intensity of incorporation/
replacement of different aquaporin isoforms within cell 
membranes [4].

The current understanding of these mechanisms, 
which allow for the regulation of water transport inten-
sity through various membranes of the plant cell, will be 
discussed in more detail.

Transcriptional regulation under dehydration 
conditions

Several studies have shown that the expression of 
genes encoding aquaporins is tissue specific and strongly 
influenced by environmental factors such as drought, sa-
linity, and high/low temperatures. The data summarized 
in Table 3 clearly show that the studied genes encod-
ing aquaporins of the PIP and TIP subfamilies, which are 
specialized in water transport, significantly change their 
expression profile. In addition, the level of transcript ac-
cumulation of PIP family genes is the most variable.

The data on stress-induced change in expression 
presented in Table 3 demonstrate three key findings: 
(1) not all aquaporin genes within the same subfamily 
undergo unidirectional changes in expression intensity 
in response to stress; (2) the effects of transcriptional 
exposure to the same stressor may vary in its impact on 
the accumulation of expression products, depending on 
the studied organ (e.g., roots or leaves) and/or its age; 
(3) a change in gene expression in several tested aqua-
porins exhibit complex changes over time. These data 
support the existence of regulation at the transcriptional 
level, although the mechanisms underlying these phe-
nomena are far from understanding. In the foreseeable 
future, a renewed interest in this regulatory form is 
likely to accompany the deciphering of promoter regions 
of genes and the identification of transcription factors. 
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Analyzed gene, species and 
tissue specificity Acting factor Changes in transcript abundance Reference

13 AtPIP genes (5 PIP1 genes, 
8 PIP2 genes) in roots and 
aerial parts of Arabidopsis 
thaliana (L.) Heynh.

Drought 
(mannitol 
250 mM)

Aerial parts: There was a strong decrease in the expression 
of PIP1;5, PIP2;2, PIP2;3, and PIP2;6.
The expression of PIP1;1 first increased and then gradually decreased.
The expression level of PIP1;2, PIP2;7 and PIP2;8 initially 
remained at the same level, followed by a gradual decrease.
The expression of PIP1;3, PIP1;4, PIP2;1, and PIP2;5 increased strongly 
in both roots and aerial parts, whereas the expression of PIP1;5, PIP2;2, 
and PIP2;3 decreased in both roots and aerial parts.
The expression level of PIP2;4 decreased much more in roots than in 
the aerial parts.
The expression level of PIP2;6 decreased less in roots than in the 
aerial parts [45]

Salinization 
(150 mM NaCl)

Aerial parts: PIP1;2 and PIP1;5 expression levels exhibited 
an initial increase, followed by a subsequent decline; PIP2;6 expres-
sion levels demonstrated a decline; the remaining genes exhibited an 
increase in expression.
Roots: PIP1;5 expression demonstrated a decrease, whereas the 
expression of other genes exhibited an increase

Low positive 
temperatures 

(4 °C)

Aerial parts: There was an increased expression of PIP2;5 and PIP2;6, 
and a decreased expression of all other genes. Roots: there was an in-
creased expression of PIP1;4, PIP2;1, PIP2;5, and PIP2;6; the expression 
of PIP2;8 first increased, then decreased (in total, no changes); there 
was a decreased expression of all other genes

12 CmPIP genes 
(2 PIP1 genes, 10 PIP2 genes) 
in roots and leaves of Cucu-
mis melo L.

Salinization 
(50 mM NaCl 
in Hoagland 

solution)

Roots: PIP2.1, PIP2.5, and PIP2.6 showed a significant decrease in 
expression.
Leaves: PIP1.1 showed a significant increase

[46]

Exposure to 
high tempera-
tures (40 °C)

Roots: PIP1.1, PIP1.2, and PIP2.2 showed a significant increase, 
whereas PIP2.1, PIP2.5, PIP2.6, PIP2.9, and PIP2.10 showed 
a significant decrease.
Leaves: PIP2.6 showed a marked increase

8 CmTIP genes (3 TIP1 genes, 
3 TIP2 genes, TIP3.1, TIP4.1, 
and TIP5.1) in roots and 
leaves of C. melo

Salinization 
(50 mM NaCl 
in Hoagland 

solution)

Roots: TIP1.1 showed a weak increase in expression, whereas TIP2.2, 
TIP4.1 showed no significant differences

Exposure to 
high tempera-
tures (40 °C)

Roots: TIP1.1 showed a significant increase in expression; 
other genes showed a decrease.
Leaves: TIP1.1 showed a significant decrease,
TIP1.3 showed a significant increase, and TIP2.1 showed 
an increase

AcAQP2 (from the PIP1 group) 
in roots, bulbs, and leaves of 
Allium cepa L.

Salinization 
(25, 50, 75, and 
100 mM NaCl)

In roots, a decrease was observed for all concentrations except 
for 75 mM NaCl

[47]

AcAQP1 (from the PIP2 group) 
in roots, bulbs, and leaves of 
A. cepa

In roots, a statistically significant decrease in expression was detected 
at 100 mM NaCl, whereas in bulbs, a statis-tically significant decrease 
was detected at all concentra-tions except for 75 mM NaCl.

AcAQP3 from the TIP2 group 
in roots, bulbs, and leaves of 
A. cepa

Leaves showed a decrease in expression for concentra-tions 
of 50 and 100 mM NaCl; roots showed a decrease for all concentra-
tions but most pronounced for 50 mM NaCl; bulbs showed a decrease 
for concentrations of 50, 75, and 100 mM NaCl

ZmPIP2;2 and ZmPIP2;6 
in roots of Zea mays L. Drought No changes compared with control [48]

10 PIP genes (4 PIP1 genes, 
6 PIP2 genes) in leaves 
of Brassica oleracea L. 
var. italica

Salinization PIP1–2 showed an almost threefold increase in expression compared 
with control leaves [49]

Table 3 (continued) / Окончание таблицы 3 
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Therefore, it is currently impossible to characterize the 
regularities of the observed differences and to assess 
the extent to which the change in transcription of differ-
ent aquaporins is due to a non-specific or, conversely, 
a specific response to stress factor exposure.

Post-translational regulation during dehydration
The findings from the aforementioned studies indicate 

the possibility of regulating the aquaporin activity at both 
the gene and protein levels. An evident mechanism of the 
latter involves the alteration in the spectrum of aquaporin 
isoforms, which is consistent with the previously charac-
terized change in the transcription of aquaporin-encod-
ing genes. Nevertheless, there may be mechanisms that 
result in changes in the activity of existing aquaporins 
within specific membranes. The mechanisms underlying 
the regulation of aquaporins at the post-translational 
level are described below. Membrane transporters, in-
cluding aquaporins, are characterized by conformational 
changes, which is one of the mechanisms of permeability 
control. An analysis of the three-dimensional structure 
of several aquaporins has led to the conclusion that the 
gate mechanism is in a constant dynamic equilibrium 
that shifts in response to changes in external conditions. 
Phosphorylation, protonation, and binding of bivalent 
cations are critical factors in this regulatory response. 
The process of phosphorylation and dephosphorylation 
of serine and threonine residues within aquaporins is 
subject to the regulation of protein kinases, leading to 
alterations in the tertiary structure and, consequently, the 
pore size [50–53]. A key aspect of water transport across 
the plasma membrane is the phosphorylation of Ser256 
compared with the phosphorylation of Ser264 and Ser269 
[54]. Another mechanism that may lead to a decrease in 
aquaporin activity is the destruction of disulfide bridges, 
a process that involves the participation of heavy me-
tals such as mercury and silver [55, 56]. The effect of 
reactive oxygen species (ROS) on aquaporin activity is 
similar [57]. However, high levels of ROS inhibit the activ-
ity of aquaporins, whereas low levels have a stimulating 
effect [58].

Some alternative regulatory mechanisms at the pro-
tein level have been identified for aquaporins. One such 
mechanism involves a change in the rate of aquaporin 
transport from the synthesis site in the endoplasmic re-
ticulum (ER) to the corresponding membranes [59, 60]. 
This mechanism may offer a potential explanation for the 
discrepancy between the stress-induced change in the 
accumulation of transcription products and the pool of 
encoded proteins detected in studies [61]. The mecha-
nisms underlying this process are still unclear. One hy-
pothesis proposes the involvement of two-acid motifs in 
the amino acid sequences of PIP aquaporins, which are 
likely involved in the mechanism of ER exit. An alterna-
tive mechanism involves the regulation of SNARE (soluble 

N-ethylmaleimide-sensitive factor adaptor protein recep-
tors) proteins of the syntaxin family, which are involved 
in membrane fusion during vesicular transport. Together, 
these mechanisms may account for the observed constant 
“recycling” between membranes detected for aquaporins, 
although the rate of this recycling may vary. In addition to 
redistribution between cell membranes, aquaporins may 
be rapidly removed from their respective membranes un-
der osmotic and salt stress, which subsequently reduces 
membrane permeability to water. The rapid response 
is believed to be partially determined by the degree of 
phosphorylation of the C-terminal domain [4, 10]. Conse-
quently, a complex system of changes in the aquaporin 
pool within membranes, encompassing the plasmalemma 
and tonoplast, serves to regulate the dynamic equilibrium 
of aquaporin permeability to water under both normal 
conditions and stressors [27].

The examples evaluated in this section unmistakably 
demonstrate the heterogeneity of mechanisms that regu-
late the involvement of aquaporins in the development 
of adaptation mechanisms in plants. These mechanisms 
are manifested at the level of both transcripts and pro-
teins. Furthermore, the identified changes vary by their 
orientation and velocity, depending on both the stressor 
type and the studied aquaporin. Currently, the PIP fam-
ily of aquaporins is the most extensively studied, which 
can be attributed to the deep interest of researchers in 
this group, considering the critical role of plasmalemma 
permeability to water. Moreover, these data indicate the 
need to continue and expand studies aimed at further 
identification of multiple pathways regulating the aqua-
porin activity at different levels of organization and during 
dehydration. Further improvements in the accurate iden-
tification of closely related aquaporin-encoding genes 
and isoforms of these transporters are essential. A com-
parison of the rate and direction of aquaporin transport in 
the cell with the rate of their synthesis/degradation may 
be important.

Aquaporins in flooding and in aquatic higher plants
A large body of data indicates that the spectrum of 

aquaporins and their activity change when exposed to 
the risk of dehydration (salinity, drought, and high and 
low temperatures). However, the mechanisms for aqua-
porin contribution to the adaptive response to factors 
that are expected to increase the water flux into cells 
are not clearly understood. These factors include flood-
ing (short-term response) and the growth of secondary 
aquatic higher plants in an aquatic environment (long-
term adaptation).

The role of aquaporins in flooding has been studied 
for several decades. However, most of this research has 
focused on elucidating the effect of oxygen deficiency 
that develops during flooding on water transport. A de-
crease in hydraulic conductivity has been identified as 
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Table 4. PIP and TIP aquaporins in marine angiosperms
Таблица 4. Аквапорины PIP и TIP у морских покрытосеменных растений

Plant species Expressed gene, accumulated protein Reference

Zostera marina L.

In contrast to land plants, PIP gene expression was higher in shoots than in roots. 
Specific expression of TIP1 and TIP5 genes was observed in male flowers. [67]

The role of PIP proteins in the regulation of water content during growth, seed germina-
tion, and the tidal cycle has been demonstrated [68]

Posidonia oceanica (L.) 
Delile

PoPIP1;1 transcripts were detected in meristematic regions of shoot and root apical 
meristems, epidermal and subepidermal cells of leaves, and vascular tissues. 
PoTIP1;1 transcripts were detected in tissues whose cells had a well-defined vacuole. 
Upon exposure to elevated salinity, PoTIP1;1 expression was greatly increased compared 
with PoPIP1;1 expression.

[69]

The immunolocalization of PoPIP1;1 protein on leaf transversal sections re-vealed 
its presence in the epidermis and, to a lesser extent, in vascular bun-dles and the 
mesophyll; the accumulation of this protein increased when ex-posed to increased 
salinity

[70]

one of the earliest effects observed during flooding [62]. 
This phenomenon may be attributed to a rapid decrease 
in aquaporin permeability. The regulatory mechanisms in-
clude a rapid decrease in pH induced by hypoxia, as well 
as the subsequent protonation of histidine residues [63]. 
Another potential mechanism may involve the accumula-
tion of ROS, which have been identified as regulators of 
aquaporin activity [57]. However, the existing data do not 
allow for a clear distinction between the effects of oxy-
gen deficiency and excess water. This challenge may be 
partially addressed by studying the changes in aquaporin 
activity under conditions of well-aerated hydroponics. 
Unfortunately, no studies have been found that directly 
address this question, although some insights can be ob-
tained from papers on control plants cultivated in hydro-
ponics. The following examples provide illustrative cases.

As demonstrated in previous studies, a decline in 
the expression of genes encoding aquaporins HvPIP2;1, 
HvPIP2;2, and HvPIP2;5 is accompanied by a reduction in 
water absorption by barley roots [64]. However, a com-
parative analysis of aquaporins belonging to the PIP sub-
family in root hairs of wild-type barley seedlings and brb 
mutants, characterized by a complete absence of hairs, 
which were cultivated in hydroponics, revealed no signifi-
cant differences [65]. Consequently, it was concluded that 
aquaporin isoforms specifically expressed in root hairs 
are not involved in water absorption.

As a second example, we can mention another study 
that compared the roots of soybean seedlings grown in 
hydroponic systems (aerated and hypoxic). It was shown 
that the expression of four tested genes encoding PIP2 
aquaporins varied significantly in control, but according 
to the authors, it this variation corresponded to the diur-
nal rhythm [66]. Thus, it is currently impossible to assess 
the effect of flooding on aquaporin activity in the absence 
of oxygen deficiency during short-term exposure.

In contrast to higher land plants, higher secondary 

aquatic plants absorb soluble substances mainly through 
leaves rather than roots [67]. The data indicate that only 
25 aquaporin genes have been identified in the genome 
of Zostera marina L., including only 4 PIP genes, which is 
much fewer than in land angiosperms. This phenomenon 
may be related to a reduced need for proteins respon-
sible for water absorption and mineral elements in plants 
growing in the aquatic habitat [67].

The study of tissue localization and aquaporin activity 
in such plants is still at its early stages. The interpretation 
of data obtained from monocotyledonous angiosperms 
of the genera Zostera and Posidonia is complicated by 
the fact that these plants grow in the sea, and the need 
to avoid excessive watering of tissues in these plants 
is combined with the need to cope with salinity (in con-
trast to glycophytic angiosperms). Nonetheless, Table 4 
demonstrates a substantial accumulation of transcripts 
of genes encoding representatives of PIP aquaporins in 
shoot cells of apical meristems and epidermis. Converse-
ly, transcripts of TIP protein genes were observed when 
the effect of salinization and vacuole size increased. 
The data in Table 4 underscores the need for further re-
search on potential changes in the function of aquaporins 
and the mechanisms of their regulation in aquatic plants.

AQUAPORINS IN PLANT DEVELOPMENT
The ability of organisms to adapt to adverse environ-

mental factors is predicated on genetic programs that 
ensure individual development under normal conditions. 
In the ontogenesis of flowering plants, there are stages 
that are similar to the periods of dehydration or increased 
hydration. One example is the well-known process of 
dehydration during seed formation, which increases the 
dormant period. It is also known that intensive hydration 
processes result in a significant increase in cell volume. 
Such processes include seed germination, elongation 
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(unique to plant cells), apical growth of the pollen tube 
and root hair, and isodiametric cell growth (observed, 
for example, during leaf development). These processes 
involve enhanced transport of water and dissolved com-
pounds through the plasmalemma and tonoplast. None-
theless, the data on the role of PIP and TIP proteins in the 
aforementioned processes, as presented in the literature, 
remain rather fragmentary. The following examples il-
lustrate their involvement at different stages of develop-
ment, as evidenced by changes in the transcriptional and 
protein profiles of aquaporins.

Aquaporins in seed germination
Seed swelling, which involves hydration of the endo-

sperm and embryo, accompanied by metabolic activa-
tion, including the formation of lytic vacuoles, appears 
to be the primary stage in the development of angio-
sperms [16]. Using Arabidopsis seeds as an example, the 
water content has been shown to increase from 11% in 
dry seeds to 82% 24 h after the onset of germination [71]. 
During the germination process, an increase in water flux 
is observed, accompanied by elongation of seedling cells 
and vacuolization [72, 73].

The example of Arabidopsis seeds shows that active 
expression of aquaporin genes belonging to the PIP1 
(PIP1;1, PIP1;2, and PIP1;4) and PIP2 (PIP2;1, PIP2;2, 
PIP2;6, and PIP2;7) subfamilies as well as tonoplast aqua-
porin genes (TIP1;1, TIP1;2, and TIP2;1) starts after germi-
nation. A similar increase in the accumulation of PIP and 
TIP aquaporin gene transcripts was found in rice, bean, 
and horse chestnut. The involvement of aquaporins in the 
enhancement of water absorption is confirmed by inhibitor 
analysis (mercury ions) as well as by the studies of trans-
genic and mutant plants of rice, Arabidopsis, and tobacco. 
For example, knockout mutants in the OsPIP1;3 gene 
were characterized by a strong decrease in germination 
rate, whereas an increase in the expression of this gene 
enhanced the germination process [74]. The role of these 
proteins in the regulation of germination and longevity 
of Arabidopsis seeds has been demonstrated using TIP3 
aquaporin gene mutants [75]. Therefore, the enhance-
ment of water transport through both the plasmalemma 
and the tonoplast is evident.

The sprouting stage is followed by the development of 
seedlings and their juvenile organs, whose cells undergo 
significant elongation, thereby establishing the polarity of 
the emerging plant organism. This initial developmental 
stage passes into the vegetative growth phase, accom-
panied by a shift in the function of aquaporins.

Aquaporins and axial organ growth
Root aquaporins
Primary roots are formed from embryonic roots in 

seeds. There is evidence that PIP and TIP aquaporins 
are important for the growth of primary root cells [72]. 

Whereas PIP aquaporins determine the intensity of wa-
ter entry from the outside, TIP1 and TIP2 proteins are 
involved in the biogenesis of provacuoles and the de-
velopment of lytic vacuoles, providing water transport 
within vacuoles during root cell growth. This hypothesis 
is supported by the increased expression of VfTIP2;1 and 
VfTIP2;2 genes during root growth after germination in 
horse beans [76].

The data on the role of PIP and TIP aquaporins during 
root development are presented in Table 5. They have 
been characterized in detail in maize seedlings [77]. 
The transcriptional spectrum of the ZmPIP1;1, ZmPIP1;5, 
ZmPIP2;1, and ZmPIP2;5 genes and the expression of the 
encoded isoforms showed a certain zonality when moving 
from the tip of the primary root to the zone of lateral root 
emergence. Using in situ hybridization and immunocyto-
chemical approaches, aquaporin isoforms were localized 
to different zones (e.g., cortex, epidermis) depending on 
the stage of root development. The most comprehensive 
studies are presented for rice, grape (Vitis vinifera L.), 
maize, Arabidopsis, and barley. In the maize root, 
a change in the expression of ZmPIP1;1, ZmPIP1;5, 
ZmPIP2;1, and ZmPIP2;5 genes was observed when mov-
ing from the tip of the primary root to the zone of lateral 
root emergence (Table 5) [77]. The specificity of aquapo-
rin isoform distribution has also been shown for the root 
zones of rice seedlings [78]. The authors suggested that 
the specificity of the distribution of different represen-
tatives of aquaporins is associated with differences in 
the mechanisms of intercellular water transport, as well 
as with the development of aerenchyma that is typical 
of hydrophytes. In grape roots, the gene expression and 
protein levels of VvPIP1s and VvPIP2s were shown to be 
equally distributed in the cortex and vascular tissue at 
the root tip. However, their levels are reduced in cortical 
cells of mature root zones [79].

A comparison of the zonality of expression of genes 
encoding aquaporin isoforms in grape roots with their 
homologs in Arabidopsis demonstrated that most aqua-
porin isoforms were distributed similarly in these two 
species. The expression of PIP aquaporin genes was 
found to be significantly higher in the root tip compared 
to more mature regions along the primary root axis [79].

The tissue localization of transcripts of six aquapo-
rin isoforms (HvPIP2;2, HvPIP2;5, HvPIP2;7, HvPIP1;2, 
HvTIP1;1, and HvTIP2;3) has been examined in barley [81]. 
The results demonstrated an intensive accumulation of 
aquaporin gene expression products in the epidermis 
and protoxylem. Expression in the endodermis and stem 
was primarily observed in less mature secondary roots, 
suggesting a potential role of aquaporins in regulating 
radial water transport. Among all aquaporin genes ex-
amined in barley, HvTIP1;1 exhibited ubiquitous expres-
sion, whereas HvPIP2;5 was predominantly expressed 
in the bark.
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Table 5. Root aquaporins
Таблица 5. Аквапорины в корнях

Object Expressed gene, accumulated protein Plant Reference

Root of 7–8-day old 
seedlings (0–5 mm from 
the tip)

ZmPIP1;1, ZmPIP2;1 and ZmPIP2;6 contribute most to expression, 
with the ZmPIP2;6 protein exhibiting a consist-ently low expres-
sion level across all root zones, yet being the most abundantly 
detected protein

Zea mays L. [77]

Root of 7–8-day old 
seedlings (5–10 mm 
from the tip)

Predominant expression of ZmPIP1;1, ZmPIP2;1, and ZmPIP2;5, 
whereas ZmPIP1;5 expression is increased compared with the tip. 
Of the proteins, ZmPIP2;1/2;2 and small amounts of ZmPIP1;2 and 
ZmPIP2;6 are detected

Z. mays [77]

Root of 7–8-day old 
seedlings (10–20 mm 
from the tip)

Predominant expression of ZmPIP1;1, ZmPIP1;2 and ZmPIP2;5, 
with a slightly smaller contribution of ZmPIP1;5. The accumulation 
of ZmPIP1;2 protein reaches the first maximum, and ZmPIP2;1/2;2, 
ZmPIP2;5, and ZmPIP2;6 proteins are also detected

Z. mays [77]

Root of 7–8-day old 
seedlings (30–40 mm 
from the tip)

Predominant expression of ZmPIP1;5, ZmPIP2;1 and ZmPIP2;5 
and accumulation of ZmPIP2;5 protein; lower levels of ZmPIP1;2 
protein compared with the previous zone

Z. mays [77]

Root of 7–8-day old 
seedlings (50–60 mm 
from the tip)

Predominant expression of ZmPIP1;5 and ZmPIP2;5 and the accu-
mulation of ZmPIP1;2 (second maximum), ZmPIP2;1/2;2, ZmPIP2;5 
and ZmPIP2;6 proteins

Z. mays [77]

Root of 7–8-day old 
seedlings (100–110 mm 
from the tip)

Predominant expression of ZmPIP1;5 and ZmPIP2;5 and the ac-
cumulation of ZmPIP1;2 (second maximum), ZmPIP2;1/2;2 and 
ZmPIP2;5 proteins

Z. mays [77]

Root of 38-day-old 
plants, 4 mm zone from 
root tip

OsPIP1s, OsPIP2;1, OsPIP2;3, OsPIP2;5 and OsTIP2;1 were pre-
dominantly localized in the endoderm of the root tip Oryza sativa L. [78]

Root of 38-day-old 
plants, 35 mm zone from 
root tip

The distribution of proteins among the tissues was found 
to be relatively uniform; however, their prevalence was found 
to be minimal

O. sativa [78]

Root of a 5-day-old 
seedling (above the 
growth zones)

Active expression of RsPIP1, RsPIP2, and RsTIP in vessels and 
endoderm, with weaker expression in pericycle and xylem paren-
chyma; RsTIP is expressed in the epidermis

Raphanus sativus L. [80]

Grape root tip
The distribution of VvPIP1s and VvPIP2s is uniform; however, their 
expression levels are 100- to 1000-fold greater in the meristem 
and elongation zone

Vitis vinifera L. [79]

Mature root zones
The expression of VvPIP1-1 was predominantly observed in the 
periderm, whereas VvPIP2 accumulation was relatively uniform in 
different root tissues

V. vinifera [79]

Growing root zones Intensive accumulation of HvPIP1;2, HvPIP2;2, HvPIP2;5, HvTIP1;1, 
and HvTIP2;3 Hordeum vulgare L. [81]

Sprout roots
Almost all the PIP aquaporins studied showed the highest level 
of expression in zones of rapid root elongation in 4-day-old seed-
lings, as opposed to 7-day-old seedlings

Z. mays [12]

Root hairs (in aqueous 
solution) PIP2;2 expression not detected

Arabidopsis 
thaliana (L.) 

Heynh.
[82]

Root hairs of hydro-ponic 
plants

No differences in expression (transcripts of HvPIP1;1-4, 
HvPIP2;1-2, HvPIP2;4-5, HvTIP1;1-2, and HvTIP2;3 genes were 
tested) between wild-type plants and mutants lacking root hairs in 
the root epidermis; no aquaporin genes specifically expressed in 
root hairs were identified

H. vulgare [65]
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Thus, the activity of aquaporin protein expression 
and accumulation was repeatedly demonstrated in the 
youngest zones of the root, often adjacent to meristems. 
In these zones, the cells are characterized by elongation, 
leading to a dramatic increase in cell length along the 
vertical axis. Interestingly, no such direct dependence on 
the presence of aquaporins was found for another type 
of cell growth, the apical type, observed during root hair 
formation (Table 5).

As the plant undergoes further development, includ-
ing the root, the need to augment the absorption of water 
and aqueous solutions, in addition to their transporta-
tion to the aerial organs, becomes increasingly evident. 
The inhibitor analysis data indicate that the contribu-
tion of aquaporins to the hydraulic conductivity of roots 
ranges from 64% in Arabidopsis to 70%–80% in wheat, 
60%–70% in maize, 57% in tomato, and over 90% in bar-
ley [16]. Furthermore, mutants exhibiting impaired coding 
of the PIP1 and PIP2 genes demonstrated a 20%–30% de-
crease in permeability. However, the role of aquaporins 
in determining permeability is hypothesized to undergo 
changes during the development. For example, the per-
meability levels in the meristematic zone and the zone 
of extension in grape roots were demonstrated to be ap-
proximately 1000-fold higher compared with the zone of 
the formed root.

The findings suggest that the function of aquapo-
rins belonging to the PIP1 and PIP2 subfamilies un-
dergoes substantial changes during the root develop-
ment. Among these proteins, the highest degree of 
diversity is observed in the youngest growing zones. 
However, it remains a challenge to identify the precise 
factors that determine the observed tissue and species 
specificity of the aquaporin transcriptional and protein 
profiles.

Shoot aquaporins
Shoot development is characterized by intensive 

growth processes. These processes start during the for-
mation of seedling structures (i.e., juvenile organs such 
as hypocotyl/epicotyl and coleoptile) and persist through-
out stem and leaf development. The process of stem 
growth and development, similar to that of root develop-
ment, involves changes in the intensity of water transport 
at both the cellular level and the level of the entire shoot. 
Unfortunately, there is much less data on the changes in 
aquaporin isoform abundance during stem development 
compared with that in the root.

Hypocotyl and stem aquaporins
The hypocotyl, an embryo component, assumes an 

intermediate anatomical position between the embryonic 
root and stem during germination. This juvenile organ 
serves as a model organ in the study of various physi-
ological processes, including the regulation of growth 

involving aquaporins. Already in the late 1990s, data 
on the involvement of aquaporins in water absorption 
during the growth of sunflower hypocotyl cells were 
obtained using an inhibitor assay [83]. Furthermore, in 
non-growing tissues of hypocotyls, the effect of inhibi-
tors was considerably weaker, suggesting a modification 
in the contribution of aquaporins. Subsequent studies of 
hypocotyl growth in plants such as Arabidopsis, com-
mon radish, and castor bean, among others, revealed the 
participation of various representatives of the PIP and 
TIP subfamilies of aquaporins. The primary outcomes of 
these studies are summarized in Table 6.

The differential accumulation of various isoforms of 
aquaporins belonging to the PIP and TIP families has been 
demonstrated in radish [84, 85]. In hypocotyls, RsPIP1-2 
mRNA and the corresponding protein exhibited the high-
est accumulation. For the majority of the genes and en-
coded proteins of RsPIP1, RsPIP2, and RsTIP2 groups, 
the accumulation was much weaker. The accumulation 
of transcripts and TIP2 protein was also observed in the 
hypocotyls of Arabidopsis [86, 87].

A detailed study was conducted on growing hypo-
cotyls of castor bean [88]. In etiolated development at 
6–8 days, the accumulation of the RcPIP2-1 aquaporin 
corresponded to the intensity of hypocotyl elongation. 
Conversely, growth inhibition, induced by illumination, 
resulted in suppressed accumulation of this particular 
isoform. This relationship was not observed in the other 
aquaporins (RcTIP1-1 and RcPIP1-1).

Aquaporins belonging to these families regulate stem 
growth at later stages of plant development. For exam-
ple, studies on pea seedlings have demonstrated that the 
expression of aquaporin genes, specifically PIP1, PIP2, 
and TIP2, is initiated in hypocotyls and subsequently con-
tinues in young stems [89]. This effect is also evident at 
later stages of plant development, where stems main-
tain/exhibit the capacity for substantial growth. In par-
ticular, the accumulation of PsPIP2;1 transcripts gradu-
ally increased with stem elongation. Expression of genes 
encoding different isoforms of aquaporins of the PIP1, 
PIP2, and TIP2 subfamilies was detected in the stems of 
two cereal species (bristle grass and deep-water rice) 
and flax, which are characterized by internode growth 
(Table 6).

The data from various plant species have demon-
strated that changes (increase/decrease) in the expres-
sion of aquaporin genes belonging to the PIP1, PIP2, and 
TIP2 subfamilies result in corresponding changes in the 
growth intensity of hypocotyls and stems, as well as in 
the stem/root ratio [16].

Consequently, the involvement of aquaporins be-
longing to the PIP1, PIP2, and TIP2 subfamilies in shoot 
growth at both the juvenile development stage and the 
vegetative growth stage was demonstrated at the tran-
scriptional and protein levels.
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Table 6. Aquaporins in hypocotyls and stems
Таблица 6. Аквапорины в гипокотилях и стеблях

Object Expressed gene, accumulated protein Plant Reference

Hypocotyls of 6-day-old 
castor bean seed-lings

The presence of RcPIP2-1 correlated with growth intensity. 
The levels of RcPIP1-1 and RcTIP1-1 did not change Ricinus communis L. [88]

Hypocotyls of 4-day-old 
seedlings

Intense accumulation of transcription products and syn-thesis 
of aquaporin-encoded proteins of RsPIP1;2, RsPIP1;1, RsPIP1;3, 
and RsTIP1;1, whereas RsPIP2;1, RsPIP2;3, and RsTIP2;1 were 
weaker

Raphanus sativus L. [84, 85]

Hypocotyls of 6-day-old 
seedlings TIP2 (δ-TIP) accumulates intensively

Arabidopsis 
thaliana (L.) 

Heynh.
[87]

Hypocotyls of 2-day-old 
seedlings

Active expression of AtTIP1 (γ-TIP) in the growth zone, 
disappearing after 24 hours A. thaliana [86]

Hypocotyls and stems 
of etiolated seedlings 
(0–7 days old)

The expression of PsPIP1;1, PsPIP2;1, and PsTIP1;1 was observed 
for all 7 days; PsPIP2;1 expression gradually in-creased Pisum sativum L. [89]

Young stems SvPIP2;1 expression Setaria viridis (L.) 
P. Beauv. [90]

Fast growing 
inter-nodes

Enhanced expression of OsTIP1;1, OsTIP2;2, OsPIP1;1, OsPIP2;1, 
and OsPIP2;2

Oryza sativa L. var. 
indica 

(deepwater rice)
[91]

Stems Expression of genes encoding PIP1-3, PIP1-4, PIP1-5, PIP2-1 
and PIP2-2, PIP2-4, PIP2-5 and PIP2-11 aquaporins

Linum 
usitatissimum L. [92]

Young stems Expression of genes encoding PIP1-1, PIP1-3, PIP1-6, PIP2-1, 
and PIP2-9, as well as TIP1-8, TIP1-11, and TIP2-3

Gossypium 
hirsutum L. [36]

Coleoptile and leaf aquaporins
Leaves are an integral part of the shoot. The physi-

ological development of these organs can be divided into 
two processes: (1) growth and formation of the lamina 
and (2) provision of photosynthesis. Both processes de-
pend on the availability of water and other compounds 
that can be transported by aquaporins. We mostly focus 
on growth processes.

At the earliest stages of development of a flower-
ing plant seedling, the cotyledon (first embryonic leaf) 
forms the first embryonic leaves, which are then re-
placed by true leaves. Their functions include both the 
nutrition during photosynthesis, and protective function 
when germinating through the soil layer. This function is 
especially expressed in coleoptiles as embryonic organs 
of monocotyledons, modified from the second leaf. Coty-
ledon cells are characterized by their rapid and intensive 
growth, which may be associated with aquaporins, as 
indicated by limited data. For example, the expression of 
the AtTIP1 gene (γ-TIP; Table 7) has been observed dur-
ing the development of petioles and in the cotyledons of 
Arabidopsis plants [86].

Intensive growth is also typical of a juvenile organ 
such as the coleoptile. The parenchyma cells of the 
coleoptile, a modified leaf of cereals with a special-
ized defense function, are characterized by elongation. 

Studies on maize coleoptiles undoubtedly point to the 
role of aquaporins of the PIP family (Table 7) [12]. 
The accumulation of mRNA of the PIP1-1, PIP1-2, PIP1-3, 
PIP1-5, PIP2-1, PIP2-2, PIP2-3, PIP2-5, PIP2-6, TIP1-1, 
and TIP1-2 genes was shown. However, the intensity 
of accumulation of most transcription products was 
much weaker than in mesocotyls and other juvenile or-
gans, such as parts of the germinal stem (Table 7) [12]. 
The exceptions include PIP2-3, PIP2-6, TIP1-1, and TIP1-2.

The study sought to elucidate the role of aquaporins 
from these two subfamilies in the subsequent develop-
ment of the lamina (Table 7). Previous studies have con-
ducted a detailed investigation of aquaporin gene expres-
sion during leaf development. One of the studies involved 
growing barley leaves [93]. Of the 23 genes analyzed, 
17 exhibited differences in the accumulation of transcrip-
tion products in young growing tissues and in well-devel-
oped photosynthetic zones. Notably, the study identified 
tissue and age specialization. Seven of the tested genes 
were predominantly expressed in growth zones (Table 7). 
HvPIP2;5 was found to be expressed in the mesophyll, 
whereas HvPIP1;1 and HvPIP2;2 were expressed in 
the epidermis. In the elongation zone of barley leaves, 
HvPIP1;1 and HvPIP2;5 transcripts constituted 90% of 
the total number of transcripts of the PIP1 and PIP2 
genes. The analysis further revealed that the ZmPIP1;1 
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Table 7. Aquaporins in leaves and coleoptiles
Таблица 7. Аквапорины в листьях и колеоптилях

Object Expressed gene, accumulated protein Plant Reference

Growing cotyledons of 
3–5-day old seedlings

AtTIP1 (γ-TIP) is expressed in the petioles of the cotyledons 
and in the cotyledons themselves; expression is observed in the 
vascular bundles and, to a lesser extent, in the mesophyll; 
by Day 5, expression is ceased in the vascular bundles first

Arabidopsis 
thaliana (L.) 

Heynh.
[86]

Coleoptiles of seed-lings 
(96 h after seed swelling)

Expression: PIP1-1, PIP1-2, PIP1-3, PIP1-5, PIP2-1, PIP2-2, 
PIP2-3, PIP2-4, PIP2-5, PIP2-6, TIP1-1, and TIP1-2 Zes mays L. [12]

Leaf petiole of 
a 5-day-old seedling

The expression of RsPIP1, RsPIP2, and RsTIP is observed in all 
tissues, with particularly pronounced intensity in vascular bundle 
tissues

Raphanus
sativus L. [80]

Primary leaf of 
a 5-day-old seedling

HvTIP1 is highly expressed in the elongation zone; however, it is 
not expressed in fully elongated cells (in both the wild type and 
the mutant)

Hordeum
vulgare L. [95]

Leaves of seedlings 
at the 3rd leaf stage

The expression of HvPIP1;6 in the growing zone of the leaf 
accounts for up to 85% of the total PIP1, which is consistent with 
protein accumulation

H. vulgare [96]

Young leaf of a 6-day-old 
seedling AtTIP2 is intensively expressed in cotyledons and young leaves A. thaliana [87]

Young leaves of 
14–16-day-old 
seedlings

The expression of HvPIP1;1, HvPIP1;5, HvPIP2;2, HvPIP2;5, 
HvTIP1;1, and HvTIP2;3 genes is observed in various growth zones; 
HvPIP2;5 is expressed in the mesophyll, whereas HvPIP1;1 and 
HvPIP2;2 are expressed in the epidermis

H. vulgare [93]

Leaf (near the leaf 
sheath)

ZmTIP1 expression is notably pronounced in the vascular bundle, 
which is located between the xylem and phloem in the paren-
chyma

Z. mays [97]

Young leaves 
of 2-week-old plants

The expression of BnTIP1 and BnPIP1 in the mesophyll and bundle 
sheath, exhibiting a weak tendency to differentiate in bundle cells

Brassica
napus L. [98]

Rosette plant
AtTIP1 is expressed in growing bracts and vascular bundles of 
petioles and in young leaves; there was no expression in stem 
apex and leaf buds

A. thaliana [86]

Mature leaves
Expression of genes encoding aquaporins PIP1-1, PIP1-6, PIP2-1 
and PIP2-9, and TIP2-3 is observed; accumulation of transcripts 
is increased compared with young leaves

Gossypium 
hirsutum L. [36]

and ZmPIP2;1 homologs in maize also contributed signifi-
cantly to the total transcripts of PIP1 and PIP2 genes in 
the maize leaf elongation zone, along with ZmPIP2;2 [94]. 
The findings on the role of PIP aquaporins do not exclude 
the importance of TIP subfamily representatives. The re-
sults obtained from the analysis of Arabidopsis, barley, 
maize, and rapeseed are summarized in Table 7. The in-
creased expression of TIP aquaporin genes indicates their 
critical role in the vacuolization of leaf cells.

Furthermore, an accumulation of transcripts from the 
PIP1-1, PIP1-6, PIP2-1, PIP2-9, and TIP2-3 genes, was 
observed in mature cotton leaves, with this accumula-
tion increasing with leaf age [36]. The proteins encoded 
by these genes are thought to be involved in the supply 
of water and nutrients needed for metabolic processes.

The significance of aquaporins belonging to the PIP1, 
PIP2, and TIP1, TIP2 subfamilies was shown through the 
use of transgenic plants. The increase in the accumulation 

of transcripts for genes belonging to the aforementioned 
aquaporin subfamilies, including heterologous ones, has 
been observed in these models, resulting in the intensi-
fication of leaf growth [16]. Consequently, a substantial 
body of evidence has emerged regarding the enhanced 
transcription of aquaporin genes belonging to the PIP1, 
PIP2, and TIP subfamilies during the leaf development. 
However, there is a lack of research on the specificity of 
transcript accumulation of these genes depending on age 
(i.e., juvenile developmental stage and mature leaf stage) 
and tissue specificity.

Aquaporins in the development of reproductive organs
The reproductive process in angiosperms comprises 

several stages, including flower bud formation, flower 
development, fertilization, embryo formation, and seed 
and fruit development. Obviously, each stage depends 
on the availability of water and nutrients. Therefore, 
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it may be assumed that aquaporins play their role in 
these processes. However, studies addressing this sub-
ject are limited, because most of them investigate on the 
role of aquaporins in fruit and seed formation. This par-
ticular aspect was the primary focus in preparation for 
the present review.

Nevertheless, the involvement of aquaporins in other 
steps will be described below. For example, an increase 
in transcription of PpTIP1 and PpPIP2 has been shown 
during flower bud development in peach trees [99]. It has 
been demonstrated that PIP2;2 aquaporins play a regu-
latory role in the process of reversible petal opening in 
tulips and rough gentian [100, 101]. Furthermore, the 
studies have revealed that NtPIP2;1, but not NtPIP1;1, 
is expressed in tobacco plants during pollen germination 
on the pistil stigma [102]. In addition, the expression of 
AtTIP1;3 and AtTIP5;1 genes has been detected in Ara-
bidopsis pollen during pollen formation and subsequent 
germination [103, 104].

Fruit aquaporins
Fruit growth and development are driven by two 

primary processes: cell division and cell elongation. 
Cell elongation, in particular, depends on aquaporin-
mediated water transport through the plasmalemma and 
tonoplast, resulting in subsequent accumulation in the 
vacuole. The driving force of this water flux is the high 
osmotic pressure generated by the accumulated metabo-
lites, primarily sugars. Table 8 presents data on changes in 
the expression level of aquaporin-encoding genes during 
the development and ripening of fruits of different plant 
species.

One of the earliest documented examples of the corre-
lation between the fruit development and the expression 
of tonoplast aquaporin genes was observed in Arabidop-
sis fruits. In addition, the accumulation of transcription 
products has been observed in the early stages of fetal 
development, although this has not been detected in the 
embryo [86]. Subsequent research demonstrated the ex-
pression of aquaporin TIP1 genes in pea, with maximal 
expression occurring at the onset of seed formation [106]. 
In addition, the role of TIP1 in grape berry development 
has been demonstrated, with increasing expression le vels 
during the ripening process [108]. Specific expression of 
the CsTIP1;1 and CsTIP2;1 genes has been detected dur-
ing the formation of cucumber fruits [114].

Further evidence supporting the involvement of PIP 
aquaporins in fruit development is provided in the stud-
ies of various plant species, including beans, grapes, to-
matoes, and apples (Table 8). These studies revealed an 
accumulation of PIP transcription products, particularly 
those belonging to the PIP1 group. This accumulation 
was found to be phase-dependent, with a peak during 
the ripening stage and a subsequent decline at the end of 
the ripening period [109, 113, 114]. However, the profile 

of genes encoding different isoforms of PIP1 aquaporins 
differed considerably. The expression of genes belonging 
to the PIP2 group has been demonstrated in some plants 
studied during fruit formation and ripening [108, 110].

Consequently, the role of aquaporins belonging to the 
PIP and TIP families was demonstrated through the ob-
servation of fruit formation. The most frequent specific 
expression of PIP1 and TIP1 aquaporin genes, which de-
pended on the ripening phase and the intensity of fruit 
vacuolization, was observed in the studies.

Role of aquaporins in seed formation
The formation of seeds may be regarded as the culmi-

nating stage in the life cycle of higher plants. During the 
early stages of seed development, there was an inten-
sive expression of genes encoding aquaporins of the PIP1 
and PIP2 groups in various tissues. Several publications 
from the early 2000s have reported the accumulation of 
transcripts of the aquaporins PIP1;1, PIP1;2 PIP2;1, and 
PIP2;2, as well as TIP2;1 and TIP2;2, for various plants, 
including Arabidopsis, soybean, tomato, and rice [115]. 
The increase in the number of expressed aquaporin genes 
and in the intensity of their transcription are associated 
with the provision of photosynthesis and the transport of 
aqueous sucrose solution, which promotes seed deve-
lopment. Another aquaporin, TIP3, has been identified 
as a marker of mature seeds [12]. It has been identi-
fied in the membranes of protein bodies derived from the 
vacuolar system in maturing bean seed cells [116, 117]. 
Later, this aquaporin was identified in seeds of several 
plants, including Arabidopsis, pea, maize, and horse 
chestnut [115]. However, the process of TIP3 accumu-
lation in the membranes of protein bodies is typical of 
desiccated orthodox seeds, whereas in recalcitrant seeds 
(which are unstable to dehydration, such as in oak and 
horse chestnut), it was preserved in the tonoplast [13]. 
In addition, TIP3 was shown to be localized in the plas-
malemma. It has been hypothesized that TIP3 functions 
as a partial compensatory mechanism for transport pro-
cesses within the plasmalemma, since the abundance of 
aquaporins PIP1 and PIP2 decreases significantly during 
maturation [118].

At later stages of seed maturation, especially in or-
thodox seeds, aquaporins participate in the rapid out-
flow of water during seed desiccation [71, 75]. Eleven 
isoforms of PIP aquaporins were found in dry seeds of 
Arabidopsis, with almost no accumulation of transcripts 
of the corresponding genes. In dry rice seeds, active ex-
pression of only the PIP2;7 gene was observed, whereas 
the expression of the PIP1;1, PIP1;2, and PIP2;1 genes 
was very low [74].

The obtained data demonstrate that the distinct 
aquaporin isoforms present at varying stages of seed 
deve lopment induce an initial increase in seed size 
and an accumulation of nutrients within the seed. This 
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Table 8. Fruit aquaporins
Таблица 8. Аквапорины плодов

Object Expressed gene, accumulated protein Plant Reference

Growing pod AtTIP1 (γ-TIP) expression is observed during ovary-to-fruit devel-
opment and later in pod flaps; no expression in seed embryos

Arabidopsis 
thaliana (L.) 

Heynh.
[86]

Seed coat of growing 
beans

PvPIP2;3 in the phloem unloading zone involved in phloem 
water entry Phaseolus vulgaris L. [105]

Pericarp of growing 
beans (up to 5 days after 
flowering)

Maximum expression of PsTIP1 (γ-TIP) in fruits is observed 
on Day 4 Pisum sativum L. [106]

Pericarp of growing 
berries

Expression of the aquaporin genes AQ1 and AQ2 corre-sponded to 
periods of rapid growth Vitis vinifera L. [107]

Berry ripening Expression of VvTIP1;2, VvTIP1;3, VvPIP2;3, and VvPIP2;5 genes 
increased during maturation V. vinifera [108]

Growing tomato fruits Expression of LePIP1;1, LePIP1;4, and LePIP1;5 Lycopersicon 
esculentum Mill. [109]

Growing fruits 
(15 days after flowering) Very strong expression of ScPIP2a Solanum 

chacoense Bitter [110]

Mature fruits 
(40 days after flowering) Almost no expression of ScPIP2a S. chacoense [110]

Cotton fibers TIP aquaporin genes are expressed during the period of maximal 
fiber elongation

Gossypium 
hirsutum L. [111]

Growing apple fruits Expression of MdPIP1a and MdPIP1b genes Malus domestica 
Baumg. [112]

Peel and pulp of rip-
ening apples

MdAQP gene expression varied at the climacteric stage depending 
on tissue identity and apple cultivar M. domestica [113]

Cucumber fruits Expression of CsTIP1;1, CsTIP2;1, and CsPIP1;3 was fruit specific Cucumis sativus L. [114]

is subsequently followed by desiccation and a dormant 
state. Consequently, multidirectional water fluxes are 
initiated through different cell membranes. The precise 
mechanism of such initiation is still unclear.

CONCLUSION
A comprehensive literature review reveals that aqua-

porins constitute a substantial group of membrane pro-
teins that facilitate the permeability of the plasmalemma 
and intracellular membranes to water and a variety of 
other compounds. An extensive experimental database 
has been amassed, enabling to assess the diversity of 
mechanisms that regulate their activity (from transcrip-
tional to post-translational). Of particular interest are 
the data on the physiological role of aquaporins, particu-
larly their involvement in the growth and development 
of plants. One of the fundamental processes underly-
ing these phenomena is elongation. There is compelling 
evidence that H+-ATPases localized on the plasmalemma 
and tonoplast participate in this process [119, 120]. 

The data presented in this review indicate the active in-
volvement of aquaporins belonging to the PIP and TIP 
subfamilies, localized on the plasmalemma and to-
noplast, in this type of growth. These aquaporins are 
the most conservative in the course of evolution [23]. 
They are predominantly involved in the regulation of the 
growth intensity of a wide variety of plant organs, start-
ing from juvenile parts (Tables 5–8). It is hypothesized 
that the intensity of water transport by TIP is significantly 
superior to that of PIP, a finding that aligns with the es-
tablished role of plasmalemma and tonoplast aquaporins. 
The former are responsible for the entry of water into 
the cell from the outside, whereas the latter facilitate 
the rapid transportation of water into the vacuole to 
prevent cell damage. This balance of functions plays a 
critical role in the successful execution of growth pro-
cesses during development. Interestingly, aquaporins of 
the same subfamilies are involved in the reverse process, 
the dehydration that occurs during seed formation. Fur-
thermore, the intensity of this process determines the 
longevity of seed formation.
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The selected mechanism is probably further used by 
plants in adapting to unfavorable conditions, primarily 
those associated with water deficiency, including sa-
linity, drought, and low temperatures. Table 3 summa-
rizes the data on the role of aquaporins PIP1 and PIP2 
in the regulation of water fluxes through the plasma-
lemma under these conditions. The reverse stress fac-
tor, characterized by flooding leading to excess water, 
also appears to necessitate the active involvement of 
TIP aquaporins; however, the available data are limited. 
Most of the data presented in this review were obtained 
at the transcriptional level. In some cases, changes in 
expression were confirmed at the protein level. A detailed 
analysis of the protein profiles of plasmalemma and to-
noplast is required, because the diversity of aquaporin 
isoforms and multiple mechanisms of post-translational 
regulation are not always considered. In general, the data 
collected so far are still too fragmentary to character-
ize the role of these aquaporins in normal and stress-
stimulated states. These factors can either stimulate or 
inhibit growth, as well as to determine the intensity of 
adaptation processes.
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