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ABSTRACT

Bioinformatics is a rapidly growing discipline at the interface of biology, computer science, and mathematics. Recent
scientific and technological advances in biological and biomedical sciences have led to a rapid increase in data genera-tion.
The analysis and interpretation of such data requires powerful computational tools and specialists with deep expertise in
various fields, including molecular biology, genetics, programming, and mathematics. Currently, machine learning and deep
learning methods are being rapidly integrated into various fields of biology and medicine, significantly transforming bioin-
formatic solutions and marking the advent of a new era in bioinformatics. The development of new algorithms and efficient
data analysis methods using artificial intelligence forms the foundation for the future growth of this field. In this context,
the demand for specialists capable of bridging the gap between biological and mathematical disciplines continues to grow,
necessitating the adaptation of educational programs. This article reviews recent trends in bioinformatics, including the de-
velopment of multi-omics approaches and the use of artificial intelligence, and highlights the importance of multidisciplinary
education with advanced training in mathematics and statistics to prepare a new generation of scientists capable of driving
innovation in this dynamic field.
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AHHOTALMUA

BuonHdopMaTka — 370 ObICTPO pa3BMBAIOLLAACA AMCLMMNIMHA HA CTbIKE Gronoruu, MHopMaTUKM U MaTeMaTuku. HayuHo-
TEXHUYECKWA Nporpecc B 061acTn Bronornyeckux 1 BUOMeAMLIMHCKMX HayK 3a Noc/efHUe oAbl NMPUBEN K CTPEMUTENIHOMY
pocTy 06beMOB AaHHbIX. [ aHanu3a 1 MHTepnpeTaumm 60NbLUMX AAHHBIX HYXKHbI MOLLHBIE BbIYUCIUTENBHBIE MHCTPYMEHTHI
M cneumanucTbl C ryboKUMM 3HaHUAMM B Pa3nnuHbIX 06MacTAX, BKIKOYasA MONEKyNspHYl0 6uonoruio, reHeTHKy, nporpam-
MWUpOBaHWe U MaTeMaTuKy. B HacTosiee BpeMsl MPOMCXOAUT CTPEMMTENbHASA MHTErpaumMsl MeTOA0B MaLUMHHOIO M rybo-
KOT0 MaLLUMHHOro 0by4eHMs B pasnuuHble 061acTv buonorum U MeLUUMHBI, YTO B CYLLECTBEHHOM CTEMEHU MeHsieT hopmMart
OMOMH(OPMATUYECKUX PELLEHMIA U MO3BOJISIET FOBOPUTL O HACTYNEeHUM HOBOW 3pbl B BronHdopmatuke. Pa3paboTtka HoBbIx
anropuTMOoB M cnocoboB 3G PeKTUBHOrO aHanu3a AaHHBIX C UCMO/Ib30BaHUEM UCKYCCTBEHHOMO MHTENNEKTa ABNSETCA OCHOBOM
Ans bynywiero pa3suTMs aToM 06nacTu. B 3Toi cBA3M cnpoc Ha creuuanucToB, CNOCcoBHLIX NPeofoNeTb paspbiB Mexay tuo-
JIOTMYECKVMM U MaTEMATUYECKUMW AMCLMIIIMHAMK, MPOAOCITKAET pacTu, uto TpebyeT COOTBETCTBYIOLLEN aganTaumu y4ebHbIX
nporpamMM. B cTaTbe paccMmaTtpuBaloTCsl MocnefHUe TeHAEHUMM B BMOMH(DOPMaTUKe, Takne KaK pa3BuUTME MYNbTUOMMKCHBIX
MoJX0[0B U UCTOJIb30BaHWE UCKYCCTBEHHOMO MHTENNEKTA, @ TaKXKe NOAYEPKMBAETCA BaXXHOCTb MHOrOMpoguibHOro 0bpaso-
BaHWA ¢ yrnybneHHbIM 06ydeHneM B 0611aCTV MaTEMaTUKM W CTAaTUCTUKM ANS NOAFOTOBKM HOBOTO MOKOJIEHMS YYeHbIX, CNocob-
HbIX CTUMYSIMPOBAaTb MHHOBALMM B 3TOM AMHAMWUYHOM 06/1aCTW HayKMu.
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SUBJECT AND TASKS OF
BIOINFORMATICS, AND ITS ROLE
IN MEDICINE AND FUNDAMENTAL
AND APPLIED BIOLOGY

Bioinformatics is an interdisciplinary area that combines
biological sciences, mathematics, statistics, and computer
technology to collect, store, analyze, and interpret biologi-
cal and biomedical data. This rapidly evolving field focuses
on the development and implementation of algorithms and
computational tools for biological data analysis, particu-
larly in genomics, transcriptomics, proteomics, and struc-
tural and systems biology. The modern era in hiology is
distinguished by the rapid accumulation of vast amounts
of data generated by advanced techniques such as next-
generation sequencing (NGS), third-generation sequen-
cing (TGS), structural biology, and mass spectrometry.
The data generated by these techniques are often too large
and complex to be managed using conventional approaches.
At the same time, these massive databases may be crucial for
understanding how life is organized at the molecular level.
They are essential for understanding the complex biological
processes that govern the structure and functioning of liv-
ing systems, ranging from gene expression regulation and
protein interactions to the organization of complex intracel-
lular structures and intercellular interactions. Advances in
computational techniques are critical for interpreting such
complex systems and exploring the fundamental laws that
control life. Research in personalized medicine, drug devel-
opment, systems biology, and agricultural sciences cannot
advance without the active development and implemen-
tation of bioinformatics approaches for large-scale data
analysis and interpretation [1-8].

The development of bicinformatics has been largely
driven by the advancement of next-generation sequenc-
ing, which is becoming increasingly accessible and in-
tegrated into routine clinical practice. Technological
advances, combined with lower sequencing costs and
expanded applications in a variety of fields, have signifi-
cantly increased the use of these methods. In the near
future, NGS and TGS technologies are expected to play a
key role in shaping healthcare and become the standard
for biomedical research.

In clinical diagnosis and personalized medicine, there
has been substantial global increase in research based
on whole genome or targeted DNA sequencing (including
exomes and individual gene panels) and transcriptome
sequencing. These techniques are becoming increasingly
accessible to a wide range of researchers and clinical
laboratories [9, 10]. NGS makes it possible to get unparal-
leled insights into genetic variations in human populations
and investigate the mechanisms underlying hereditary
diseases and cancer [11, 12]. Genome-wide association
studies (GWAS) using NGS or microarray hybridization
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data enable identifying correlations between genetic vari-
ants and traits or diseases [13, 14]. These advancements
make it possible to identify specific molecular markers
of various diseases and consider their cumulative impact,
allowing for personalized treatment based on patients’
individual characteristics [15]. Moreover, NGS facilitates
the development of non-invasive diagnostic techniques,
such as liquid biopsy, which allows monitoring disease
progression and response to treatment, and non-invasive
prenatal testing (NIPT) [16—18]. In addition, NGS plays
a fundamental role in the development of personalized
cancer immunotherapy (cancer vaccines) by identifying
neoantigens expressed in tumors [19-21]. This approach
not only maximizes therapeutic impact on cancer cells,
but also minimizes potential side effects of broader
immunotherapies that can affect healthy cells. More-
over, the development of techniques such as Chromium
(10x Genomics), C1 (Fluidigm), and Seek One (Seek Gene
Biotechnology) has enabled simultaneous acquisition of
sequencing data for thousands of single cells (scDNA-seq
and scRNA-seq) [22]. Therefore, this approach refines
genetic testing to the level of single-cell analysis for as-
sessing heterogeneity in cell populations and identifying
unique events in individual cells.

Other techniques, such as ChIP-seq, ATAC-seq, and
Methyl-seq and their combinations with other omics
technologies, allow studying the regulation of gene ex-
pression, chromatin dynamics, and various epigenetic
mechanisms [23-27]. Specialized NGS methods are being
integrated into clinical practice as evidence accumulates
and the clinical significance of specific mechanisms in
the development of diseases is confirmed [15, 28, 29].
The molecular mechanisms of disease development are
becoming much better understood at the genetic and epi-
genetic levels as genome sequencing and data analysis
techniques advance, paving the way for a new era of
precision medicine and human life extension. The new
assembly T2T-CHM13, a continuous sequence of the hu-
man genome without gaps, including previously unstu-
died regions such as centromeres and telomeres [30, 31],
has accelerated the development of genome analysis
methods, including studies on functional role of repeti-
tive sequences and the search for various structural vari-
ants. Owing to the intensive development of this field, the
number of omics data collected worldwide has increased
dramatically. In particular, large genomic data analysis
centers generate tens to hundreds of terabytes of new
data per day. By 2025, the volume of genetic data accu-
mulated globally is expected to exceed that of informa-
tion technology giants such as YouTube and X (Twitter)
[32-34].

Bioinformatics is critical for understanding the struc-
tural and functional properties of proteins and peptides.
Advances in mass spectrometry and other proteomic
technologies enable generating complex arrays of data
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on protein interactions and modifications and investigat-
ing their structure [35-37]. The interpretation of these
data aids in the investigation of various protein com-
plexes and the understanding of the intricate networks
of interactions between proteins, as well as proteins
and nucleic acids within cells [38-42]. This information
is critical for developing new drugs, studying disease
mechanisms, and identifying biomarkers [43-48]. On a
higher level, systems hiology combines multiple layers of
biological data (genomics, transcriptomics, proteomics,
and metabolomics) to create complex models of biologi-
cal systems. Bioinformatics tools are critical for model-
ing these complex systems and predicting their behavior
under various scenarios.

As data accumulated, extensive multipurpose bio-
logical databases were created. These include NCBI ser-
vices offering various databases and data analysis tools
(https://www.ncbi.nlm.nih.gov/), UCSC genome browser,
whichallows visualizing genomes and contains various anal-
ysis tools (https://genome.ucsc.edu/) [49], Ensembl [50],
EMBL-EBI (https://www.ebi.ac.uk/) [51], UniProt [52],
Protein Data Bank [53], KEGG [54], and Enzyme Database
(BRENDA) [55]. These and many other bioinformatics re-
sources are used to annotate genomes, investigate gene
function and regulation, track protein functions, meta-
bolic pathways, and genetic interactions, and uncover
new patterns by comparing biological information from
various sources.

Recently, there has been a significant increase in the
use of machine learning (ML) to identify patterns in com-
plex NGS data for addressing various pharmacogenomics
and oncogenetics issues [56]. Artificial intelligence (Al)
technologies, a powerful tool for improving the accu-
racy and speed of data interpretation, are at the cutting
edge of science. The integration of machine learning and
Al methods facilitates the extraction of useful informa-
tion, revolutionizing the analysis of omics data. It enables
identifying new genetic variants relevant to disease pro-
gression, predicting disease risk, and discovering new
biomarkers, which facilitates the development of per-
sonalized medicine and targeted therapeutic approaches.
For example, Al-based algorithms are increasingly used
in large-scale searches for new drug targets and di-
agnostic tools. As a result, numerous pharmaceutical
companies are expanding their use of Al approaches in
biomedical data processing and analysis.

ROLE OF FUNDAMENTAL MATHEMATICAL
KNOWLEDGE IN THE TRAINING OF HIGHLY
QUALIFIED BIOINFORMATICS SCIENTISTS

As bioinformatics becomes more important, so does
the demand for qualified experts who can bridge the gap
between biology and data science. The pharmaceutical
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and biotechnology industries are in need of professionals
who can interpret genomic, transcriptomic, and proteomic
data and investigate biomolecule structures for drug de-
velopment and precision medicine. Bioinformaticians are
also required by research institutes and laboratories to
implement scientific projects and manage increasingly
complex data sets. The majority of biological research to-
day relies on bioinformatics tools to identify biomarkers,
analyze next-generation sequencing findings, and model
disease mechanisms.

The interdisciplinary nature of bioinformatics pres-
ents unique educational challenges, highlighting the
need for specialized training programs. In addition to
the fundamentals of molecular biology, bioinformatician
training requires a strong mathematics background. This
is due to the fact that biological data are analyzed us-
ing a variety of statistical and computational methods.
The competence and correctness with which specific math-
ematical methods and software tools are used determines
both the reliability of the analysis and the usefulness
of information extracted from complex biological data.
A thorough understanding of mathematics, especially
statistics, probability, linear algebra, combinatorics, and
graph theory, is necessary for modeling biological sys-
tems, managing large data sets, and developing predictive
models.

Moreover, the complexity of biological data requires
expertise in machine learning, data visualization, and
programming. Programming for research purposes is
typically done in languages such as Python, R, and SQL,
whereas larger projects (including commercial bioinfor-
matics software) may require C/C++, Java, or even spe-
cialized programming languages. Bioinformatics training
also typically requires familiarity with cloud computing
platforms for data storage and processing. All of these
factors must be considered in bioinformatics education
for combining theoretical and practical training in data
analysis, learning advanced algorithms for interpreting
omics data, and developing software. This is due to the
fact that developing and optimizing new algorithms for
biological data processing and analysis is one of the most
important tasks of bioinformatics.

Rapid technological advancements in bicinforma-
tics necessitate continuous education and training. This
means that experts must be perpetual learners to keep
up with new tools, methods, and techniques, such as
deep learning approaches for analyzing omics data or ad-
vances in quantum computing. Bioinformatics education
programs must evolve in tandem with these trends to
ensure that graduates have up-to-date skills. The incor-
poration of Al and machine learning into bioinformatics
is gaining traction. Al technologies have proven particu-
larly useful in analyzing large and complex data sets in
genomic analysis, single-cell transcriptome sequencing,
spatial transcriptomics, and multi-omics technologies



https://www.ncbi.nlm.nih.gov/),
https://genome.ucsc.edu/)
https://www.ebi.ac.uk/)

PROBLEMS IN GENETIC
EDUCATION

[57-61]. Deep machine learning is currently indispens-
able in drug development, proteomics analysis, and pro-
tein structure studies [62, 63]. DeepMind’s AlphaFold2
(and a new version, AlphaFold3, available to research
institutes since November 2024) has revolutionized pro-
tein structure prediction owing to its amazing accuracy
in determining 3D structures from amino acid sequences.
AlphaFold2 and AlphaFold3 predict protein structure us-
ing deep learning methods, specifically neural networks
trained on large data sets of known protein structures
[64—68]. Demis Hassabis and John Jumper were award-
ed the Nobel Prize in Chemistry in 2024 for developing
the AlphaFold2 algorithms, highlighting the innovative
nature and significance of this technique. David Baker,
who made significant contributions to the computer de-
sign of protein molecules, shared the award with them
(69, 70].

Neural networks have also shown promise in de-
signing genome editing experiments using CRISPR/Cas9
[71-73]. As these techniques gain popularity in medicine,
agriculture, and ecology, bioinformaticians will play an
increasingly important role in ensuring their safe and ef-
fective use.

The increasing volume and complexity of data sets
inevitably raises the demand for machine learning and
deep learning experts. This trend is evident in personal-
ized medicine, where machine learning models can as-
sist in treatment selection based on a patient’s unique
genomic profile [74-79]. Multi-omics approaches that
combine genomics, transcriptomics, proteomics, and me-
tabolomics data will surely necessitate the development
of new computational tools and bioinformatics methods
for interpreting these complex data sets and discover-
ing meaningful biological relationships. Bioinformatics
tools are becoming more powerful and mathematically
complicated, therefore training new experts requires a
thorough understanding of mathematical concepts and
statistical methods. Bioinformatics training programs
in universities must place a greater emphasis on math-
ematics and statistics to provide students with the foun-
dational skills required to traverse the field's increasing
complexity.

Importantly, the two most prominent machine learn-
ing approaches of the last 30 years, deep neural net-
works and support vector machines (SVM), were origi-
nally proposed and developed in the 1960s by Soviet
experts in applied mathematics and mathematical sta-
tistics. Here, we will mention only the fundamental works
on the first learning neural networks [80], the first deep
neural networks [81], and pattern recognition [82]. Clas-
sical, strictly justified mathematical problem-solving
methods remain relevant for a long time. For example,
the training of modern large neural networks and large
language models is based on the optimal control theory
proposed in the 1950s by Pontryagin et al. [83], and the
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backpropagation method proposed by Galushkin [84].
Geoffrey Hinton earned the 2024 Nobel Prize in Physics
for his work in training deep neural networks by applying
and enhancing these methods.

CONCLUSION

In conclusion, bioinformatics is a rewarding profes-
sional path with a variety of opportunities in academic
and applied research, biotechnology industry, healthcare,
and entrepreneurship. The future of bioinformatics is in-
credibly promising, and as data accumulates and new
problems emerge, bioinformaticians will continue to play
a significant role in scientific progress. It is critical that
the education system adapts to the changing need for
highly qualified specialists in this field. The new era of
bioinformatics, with the increasing use of machine and
deep learning in various fields of biology and medicine,
must be followed by a new era of education. We encour-
age non-mathematical students who want to specialize
in bioinformatics to systematically improve their skills
and proficiency in classical mathematical tools, particu-
larly linear algebra, discrete mathematics, probability
theory, and statistics. Universities should emphasize the
mathematical component of bioinformatics by engaging
relevant experts in teaching.
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NI0NOJIHUTE/IbHAA UHOOPMALIUA
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npasky. ABTOpbI 0406pVAM BepCUio Ans MybmKaLmuu, a Takke Cornacunmchb
HecT 0TBETCTBEHHOCTb 3a BCe acMeKTbl paboThl, rapaHTVpys Haanexallee
paccMOTPeHKe W peLLieHne BOMPOCOB, CBA3aHHbIX C TOYHOCTLIO M [106poco-
BECTHOCTbI0 NI0bO ee YacTu.

BnaropapHocTu. AsTopbl 6narofapst cotpyaHukos PLL PMuKT u PL,
«Bburobank» CMN6rY. Aetopel 6naropapHsl Kupunny Bnagummposudy Bon-
KOBY 3a KPUTWYECKME 3aMeYaHus, BbICKA3aHHbIe OTHOCUTESNIbHO [aHHOM
pyKommcu.
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WcTounnku ¢uHaHcupoBaHus. PaboTa BbIMOMHEHa Npy MOAAEPXKKE
OrB0Y BO «CaHKT-TeTepbyprckuin rocynapcTBeHHbINA YHUBEPCUTET» (Mpo-
ekt N 125021902561-6).

PackpbiTe UHTepecoB. ABTOpbI 3asIBNSIOT 00 OTCYTCTBUW OTHOLLEHWIA, fie-
ATENbHOCTY W MHTEPecoB 3a NOC/eHWe TPU rOfia, CBA3AHHBIX C TPETHI MM
JmLaMy (KOMMEPYECKUMY 1 HEKOMMEPYECKVIMM), UHTEPECh! KOTOPbIX MOTYT
BbITb 3aTPOHYTHI COLEPKAHNEM CTaTbU.

OpuruHanbHocTb. [Tpy co3faHMKM HacTosLLe paboTbl aBTOPbI He UCMOb-
30BaNn paHee onybMKOBaHHbIE CBEAEHUS.

[eHepaTUBHBLIA WUCKYCCTBEHHBIA MHTENNEKT. TeKCT HacToALlen CTa-
Tb He ABNSETCS pe3ynbTaToM paboTbl FreHepaTMBHOMO WMCKYCCTBEHHOMO
VHTeNMeKTa.

PaccMoTpenune u peueHsvpoBaHue. Hactoslas paboTa nogaHa B xyp-
Han B WHMLMATMBHOM NOPSZKE 1 PaccMOTPeHa Mo 0bbI4HOM npoLesype.
B peLieH3vpoBaHMM y4acTBOBaNM ABa BHELLHWX PeLieH3eHTa W YieH pefaK-

LIMOHHOW Konnerum.

11. Morganti S, Tarantino P, Ferraro E, et al. Next generation sequencing
(NGS): A revolutionary technology in pharmacogenomics and personalized
medicine in cancer. In: Ruiz-Garcia E, Astudillo-de la Vega H, editors. Transla-
tional research and onco-omics applications in the era of cancer personal ge-
nomics. Advances in experimental medicine and biology. Vol. 1168. Springer,
Cham; 2019. P. 9-30. doi: 10.1007/978-3-030-24100-1_2

12. Edsjé A, Gisselsson D, Staaf J, et al. Current and emerging sequencing-
based tools for precision cancer medicine. Mol Aspects Med. 2024;96:101250.
doi: 10.1016/J.MAM.2024.101250

13. Abdellaoui A, Yengo L, Verweij KJH, Visscher PM. 15 years of GWAS
discovery: Realizing the promise. Am J Hum Genet. 2023;110(2):179-194.
doi: 10.1016/j.ajhg.2022.12.011

14. Defo J, Awany D, Ramesar R. From SNP to pathway-based GWAS
meta-analysis: Do current meta-analysis approaches resolve power and
replication in genetic association studies? Brief Bioinform. 2023;24(1):
bbac600. doi: 10.1093/bib/bbac600

15. Yadav D, Patil-Takbhate B, Khandagale A, et al. Next-generation se-
quencing transforming clinical practice and precision medicine. Clin Chim
Acta. 2023;551:117568. doi: 10.1016/J.CCA.2023.117568

16. Roberto TM, Jorge MA, Francisco GV, et al. Strategies for improving
detection of circulating tumor DNA using next generation sequencing. Cancer
Treat Rev. 2023;119:102595. doi: 10.1016/J.CTRV.2023.102595

17. Shegekar T, Vodithala S, Juganavar A. The emerging role of liquid bi-
opsies in revolutionising cancer diagnosis and therapy. Cureus. 2023;15(8):
e43650. doi: 10.7759/CUREUS.43650

18. Jenkins M, Seasely AR, Subramaniam A. Prenatal genetic test-
ing 2. Diagnostic tests. Curr Opin Pediatr. 2022;34(6):553-558.
doi: 10.1097/MOP.0000000000001174

19. Schafer RA, Guo Q, Yang R. ScanNeo2: A comprehensive workflow
for neoantigen detection and immunogenicity prediction from diverse ge-
nomic and transcriptomic alterations. Bioinformatics. 2023;39(11): btadé59.
doi: 10.1093/bioinformatics/btad659

20. Xie N, Shen G, Gao W, et al. Neoantigens: Promising tar-
gets for cancer therapy. Signal Transduct Target Ther. 2023;8:9.
doi: 10.1038/s41392-022-01270-x



https://doi.org/10.1016/j.csbj.2022.08.019
https://doi.org/10.1186/S43141-022-00394-5/TABLES/2
https://doi.org/10.3389/FPLS.2023.1273859/PDF
https://doi.org/10.1007/S00432-022-04161-4/METRICS
https://doi.org/10.21873/CGP.20284
https://doi.org/10.1124/PHARMREV.122.000810
https://doi.org/10.1016/J.JBIOSC.2022.08.004
https://doi.org/10.22037/GHFBB.V17I3.2977
https://doi.org/10.1038/s41525-024-00402-2
https://doi.org/10.1016/j.annonc.2020.07.014
https://doi.org/10.1007/978-3-030-24100-1_2
https://doi.org/10.1016/J.MAM.2024.101250
https://doi.org/10.1016/j.ajhg.2022.12.011
https://doi.org/10.1093/bib/bbac600
https://doi.org/10.1016/J.CCA.2023.117568
https://doi.org/10.1016/J.CTRV.2023.102595
https://doi.org/10.7759/CUREUS.43650
https://doi.org/10.1097/MOP.0000000000001174
https://doi.org/10.1093/bioinformatics/btad659
https://doi.org/10.1038/s41392-022-01270-x

PROBLEMS IN GENETIC
EDUCATION

21. Kiyotani K, Chan HT, Nakamura Y. Immunopharmacogenomics towards
personalized cancer immunotherapy targeting neoantigens. Cancer Sci.
2018;109(3):542-549. doi: 10.1111/CAS.13498

22.See P, Lum J, Chen J, Ginhoux F. A single-cell sequenc-
ing guide for immunologists. Front 2018;9:415498.
doi: 10.3389/FIMMU.2018.02425/BIBTEX

23. Choi H, Kim H, Chung H, et al. Application of computational algorithms
for single-cell RNA-Seq and ATAC-Seq in neurodegenerative diseases. Brief
Funct Genom. 2025;24: elaeks. doi: 10.1093/BFGP/ELAEQLL

24. Lee J-W, Cho J-Y. Comparative epigenetics of domestic animals: Focus-
ing on DNA accessibility and its impact on gene regulation and traits. J Vet
Sci. 2025;26(1):24259. doi: 10.4142/IVS.24259

25. Cox OH, Seifuddin F, Guo J, et al. Implementation of the Meth-
yl-Seq platform to identify tissue- and sex-specific DNA methyla-
tion differences in the rat epigenome. Epigenetics. 2024;19:2393945.
doi: 10.1080/15592294.2024.2393945

26. LiS-J, Gao X, Wang Z-H, et al. Cell-free DNA methylation patterns in aging
and their association with inflamm-aging. Epigenomics. 2024;16(10):715-731.
doi: 10.1080/17501911.2024.2340958

27. Hubert J-N, lannuccelli N, Cabau C, et al. Detection of DNA methylation
signatures through the lens of genomic imprinting. Sci Rep. 2024;14:1694.
doi: 10.1038/s41598-024-52114-3

28. Lee H, Martinez-Agosto JA, Rexach J, Fogel BL. Next genera-
tion sequencing in clinical diagnosis. Lancet Neurol. 2019;18(5):426.
doi: 10.1016/S1474-4422(19)30110-3

29. Gibbs SN, Peneva D, Cuyun Carter G, et al. Comprehensive review on
the clinical impact of next-generation sequencing tests for the management
of advanced cancer. JCO Precis Oncol. 2023;7:715. doi: 10.1200/P0.22.00715
30. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human
genome. Science. 2022;376(6588):44-53. doi: 10.1126/SCIENCE.ABJ6987
31. Hoyt SJ, Storer JM, Hartley GA, et al. From telomere to telomere: the
transcriptional and epigenetic state of human repeat elements. Science.
2022;376(6588):eabk3112. doi: 10.1126/science.abk3112

32. Stephens ZD, Lee SY, Faghri F, et al. Big Data: Astronomical or genomi-
cal? PLOS Biol. 2015;13:1002195. doi: 10.1371/JOURNAL.PBIO.1002195
33. Katz K, Shutov 0, Lapaint R, et al. The sequence read archive: A de-
cade more of explosive growth. Nucleic Acids Res. 2022;50(D1):0387-D390.
doi: 10.1093/NAR/GKAB1053

34. Danielewski M, Szalata M, Nowak JK, et al. History of biological data-
bases, their importance, and existence in modern scientific and policy con-
text. Genes. 2025;16(1):100. doi: 10.3390/GENES16010100/S1

35. Fedorov Il, Protasov SA, Tarasova IA, Gorshkov MV. Ultrafast proteomics.
Biochem. 2024;89:1349-1361. doi: 10.1134/S0006297924080017/FIGURES/4
36. Anderton CR, Uhrig RG. The promising role of proteomes and me-
tabolomes in defining the single-cell landscapes of plants. New Phytol.
2025;245(3):945-948. doi: 10.1111/NPH.20303

37. Godoy Sanches PH, Clemente De Melo N, Porcari AM, Miguel De Car-
valho L. Integrating molecular perspectives: strategies for comprehensive
multi-omics integrative data analysis and machine learning applications in
transcriptomics, proteomics, and metabolomics. Biology. 2024;13(11):848.
doi: 10.3390/BIOLOGY 13110848

38. Wu S, Zhang S, Liu CM, et al. Recent advances in mass spectrometry-
based protein interactome studies. Mol Cell Proteom. 2025;24(1):100887.
doi: 10.1016/j.mcpro.2024.100887

Immunol.

Vol. 23 (2) 2025

https://doi.org/10.17816/ecogen637074

3KonoruyecKas reHeTuKa
Ecological genetics

39. Dang V, Voigt B, Marcotte EM. Progress toward a comprehen-
sive brain protein interactome. Biochem Soc Trans. 2025;53(1):303-314.
doi: 10.1042/BST20241135

40. Rahmati S, Emili A. Proximity labeling: precise proteomics technol-
ogy for mapping receptor protein neighborhoods at the cancer cell surface.
Cancers. 2025;17(2):179. doi: 10.3390/cancers17020179

41. Edwards AN, Hsu KL. Emerging opportunities for intact and native pro-
tein analysis using chemical proteomics. Anal Chim Acta. 2025;1338:343551.
doi: 10.1016/J.ACA.2024.343551

42. Goel RK, Bithi N, Emili A. Trends in co-fractionation mass spectrom-
etry: a new gold-standard in global protein interaction network discovery.
Curr Opin Struct Biol. 2024;88:102880. doi: 10.1016/J.5B1.2024.102880

43. Kim SG, Hwang JS, George NP, et al. Integrative metabolome and pro-
teome analysis of cerebrospinal fluid in Parkinson'’s disease. Int J Mol Sci.
2024;25(21):11406. doi: 10.3390/1JMS252111406/S1

44. Wu D, Zhang L, Ding F. Current status and future directions of appli-
cation of urine proteomics in neonatology. Front Pediatr. 2024;12:1509468.
doi: 10.3389/FPED.2024.1509468/BIBTEX

45. Kliuchnikova AA, Ilgisonis EV, Archakov Al, et al. Proteomic markers of
aging and longevity: A systematic review. Int J Mol Sci. 2024;25(23):12634.
doi: 10.3390/1JMS252312634/S1

46. Nalla LV, Kanukolanu A, Yeduvaka M, Gajula SNR. Advancements in
single-cell proteomics and mass spectrometry-based techniques for un-
masking cellular diversity in triple negative breast cancer. Proteomics —
Clin Appl. 2025;19(1):e202400101. doi: 10.1002/PRCA.202400101

47. Pomella S, Melaiu O, Cifaldi L, et al. biomarkers identification
in the microenvironment of oral squamous cell carcinoma: A sys-
tematic review of proteomic studies. Int J Mol Sci. 2024;25(16):8929.
doi: 10.3390/1JMS25168929/S1

48. 7hang Z, Huang J, Zhang Z, et al. Application of omics in the diagno-
sis, prognosis, and treatment of acute myeloid leukemia. Biomark Res.
2024;12:60. doi: 10.1186/s40364-024-00600-1

49. ar do Perez G, Barber GP, Benet-Pages A, et al. The UCSC ge-
nome browser database: 2025 update. Nucleic Acids Res. 2025;53(D1):
D1243-D1249. doi: 10.1093/NAR/GKAE974

50. Dyer SC, Austine-Orimoloye 0, Azov AG, et al. Ensembl 2025. Nucleic
Acids Res. 2025;53(D1):D948-D957. doi: 10.1093/NAR/GKAE1071

51. Rodriguez-Tomé P, Stoehr PJ, Cameron GN, Flores TP. The European
Bioinformatics Institute (EBI) databases. Nucleic Acids Res. 1996;24(1):6—12.
doi: 10.1093/NAR/24.1.6

52. Consortium TU, Bateman A, Martin M-J, et al. UniProt: The universal
protein knowledgebase in 2025. Nucleic Acids Res. 2025;53(D1):0609-D617.
doi: 10.1093/NAR/GKAE1010

53. Zardecki C, Dutta S, Goodsell DS, et al. PDB-101: Educational resources
supporting molecular explorations through biology and medicine. Protein Sci.
2022;31(1S):129-140. doi: 10.1002/PR0.4200

54. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28(1):27-30. doi: 10.1093/NAR/28.1.27

55. Chang A, Jeske L, Ulbrich S, et al. BRENDA, the ELIXIR core data
resource in 2021: New developments and updates. Nucleic Acids Res.
2021;49(D1):D498-D508. doi: 10.1093/NAR/GKAA1025

56. Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-
pharmacogenomics: a path to precision medicine with many challenges.
Front Pharmacol. 2024;14:1260276. doi: 10.3389/fphar.2023.1260276

57. Erfanian N, Heydari AA, Feriz AM, et al. Deep learning applications in
single-cell genomics and transcriptomics data analysis. Biomed Pharmaco-
ther. 2023;165:115077. doi: 10.1016/J.BIOPHA.2023.115077

217


https://doi.org/10.1111/CAS.13498
https://doi.org/10.3389/FIMMU.2018.02425/BIBTEX
https://doi.org/10.1093/BFGP/ELAE044
https://doi.org/10.4142/JVS.24259
https://doi.org/10.1080/15592294.2024.2393945
https://doi.org/10.1080/17501911.2024.2340958
https://doi.org/10.1038/s41598-024-52114-3
https://doi.org/10.1016/S1474-4422(19)30110-3
https://doi.org/10.1200/PO.22.00715
https://doi.org/10.1126/SCIENCE.ABJ6987
https://doi.org/10.1126/science.abk3112
https://doi.org/10.1371/JOURNAL.PBIO.1002195
https://doi.org/10.1093/NAR/GKAB1053
https://doi.org/10.3390/GENES16010100/S1
https://doi.org/10.1134/S0006297924080017/FIGURES/4
https://doi.org/10.1111/NPH.20303
https://doi.org/10.3390/BIOLOGY13110848
https://doi.org/10.1016/j.mcpro.2024.100887
https://doi.org/10.1042/BST20241135
https://doi.org/10.3390/cancers17020179
https://doi.org/10.1016/J.ACA.2024.343551
https://doi.org/10.1016/J.SBI.2024.102880
https://doi.org/10.3390/IJMS252111406/S1
https://doi.org/10.3389/FPED.2024.1509468/BIBTEX
https://doi.org/10.3390/IJMS252312634/S1
https://doi.org/10.1002/PRCA.202400101
https://doi.org/10.3390/IJMS25168929/S1
https://doi.org/10.1186/s40364-024-00600-1
https://doi.org/10.1093/NAR/GKAE974
https://doi.org/10.1093/NAR/GKAE1071
https://doi.org/10.1093/NAR/24.1.6
https://doi.org/10.1093/NAR/GKAE1010
https://doi.org/10.1002/PRO.4200
https://doi.org/10.1093/NAR/28.1.27
https://doi.org/10.1093/NAR/GKAA1025
https://doi.org/10.3389/fphar.2023.1260276
https://doi.org/10.1016/J.BIOPHA.2023.115077

218

PROBLEMS IN GENETIC
EDUCATION

58. Athaya T, Ripan RC, Li X, Hu H. Multimodal deep learning approaches
for single-cell multi-omics data integration. Brief Bioinform. 2023;24(5):
bbad313. doi: 10.1093/BIB/BBAD313

59. Gulati GS, D'Silva JP, Liu Y, et al. Profiling cell identity and tissue archi-
tecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol.
2024;26:11-31. doi: 10.1038/s41580-024-00768-2

60. Rivero-Garcial, Torres M, Sanchez-Cabo F. Deep genera-
tive models in single-cell omics. Comput Biol Med. 2024;176:108561.
doi: 10.1016/J.COMPBIOMED.2024.108561

61. Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using
deep learning. Brief Bioinform. 2022;23(1):bbab454. doi: 10.1093/BIB/BBABLSL

62. Pun FW, Ozerov IV, Zhavoronkov A. Al-powered therapeu-
tic target discovery. Trends Pharmacol Sci. 2023;44(9):561-572.
doi: 10.1016/j.tips.2023.06.010

63. Mann M, Kumar C, Zeng W-F, Strauss MT. Artificial intelligence
for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759-770.
doi: 10.1016/j.cels.2021.06.006

64. Wang L, Wen Z, Liu S-W, et al. Overview of AlphaFold2 and break-
throughs in overcoming its limitations. Comput Biol Med. 2024;176:108620.
doi: 10.1016/j.compbiomed.2024.108620

65. Zhang H, Lan J, Wang H, et al. AlphaFold2 in biomedical research: facili-
tating the development of diagnostic strategies for disease. Front Mol Biosci.
2024;11:1414916. doi: 10.3389/FMOLB.2024.1414916

66. Varga JK, Schueler-Furman 0. Who binds better? Let Al-
phafold?2 decide! Angew Chemie. Int Ed. 2023;62(28):e202303526.
doi: 10.1002/anie.202303526

67. Bertoline LMF, Lima AN, Krieger JE, Teixeira SK. Before and after
AlphaFold2: An overview of protein structure prediction. Front Bioinform.
2023;3:1120370. doi: 10.3389/FBINF.2023.1120370

68. Borkakoti N, Thornton JM. AlphaFold2 protein structure prediction:
Implications for drug discovery. Curr Opin Struct Biol. 2023;78:102526.
doi: 10.1016/J.5BI.2022.102526

69. Leman JK, Weitzner BD, Lewis SM, et al. Macromolecular modeling
and design in rosetta: Recent methods and frameworks. Nat Methods.
2020;17:665-680. doi: 10.1038/S41592-020-0848-2

70. Baek M, DiMaio F, Anishchenko |, et al. Accurate prediction of protein
structures and interactions using a three-track neural network. Science.
2021;373(6557):871-876. doi: 10.1126/science.abj8754

71. Zhang G, Luo Y, Dai X, Dai Z. Benchmarking deep learning methods for
predicting CRISPR/Cas? SgRNA on- and off-target activities. Brief Bioinform.
2023;24(6):bbad333. doi: 10.1093/BIB/BBAD333

AUTHORS' INFO

*Anna Yu. Aksenova, Cand. Sci. (Biology);

address: 7/9 Universitetskaya emb., Saint Petersburg, 199034, Russia;
ORCID: 0000-0002-1601-1615; eLibrary SPIN: 4914-7675;

e-mail: a.aksenova@spbu.ru

Anna S. Zhuk, Cand. Sci. (Biology), Assistant Professor;
ORCID: 0000-0001-8683-9533; eLibrary SPIN: 2223-5306;
e-mail: ania.zhuk@gmail.com

Elena I. Stepchenkova, Cand. Sci. (Biology);
ORCID: 0000-0002-5854-8701; eLibrary SPIN: 9121-7483;
e-mail: stepchenkova@gmail.com

* Corresponding author / ABTOp, 0TBETCTBEHHBIV 3@ NEpenmcKy

Yol.23(2)2025

https://doi.org/10.17816/ecogen637074

3KonoruyecKas reHeTuKa
Ecological genetics

72. Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V. Using tradi-
tional machine learning and deep learning methods for on- and off-target
prediction in CRISPR/Cas9: A review. Brief Bioinform. 2023;24(3):bbad131.
doi: 10.1093/BIB/BBAD131

73. Lee M. Deep learning in CRISPR-cas systems: A review of recent studies.
Front Bioeng Biotechnol. 2023;11:1226182. doi: 10.3389/fbioe.2023.1226182
74. Sun D, Chen W, He J, et al. A novel method for screening malignant
hematological diseases by constructing an optimal machine learning model
based on blood cell parameters. BMC Med Inform Decis Mak. 2025;25:72.
doi: 10.1186/512911-025-02892-1

75. Shan R, Li X, Chen J, et al. Interpretable machine learning to predict
the malignancy risk of follicular thyroid neoplasms in extremely unbal-
anced data: retrospective cohort study and literature review. JMIR cancer.
2025;11:266269-66269. doi: 10.2196/66269

76. Ayhan B, Ayan E, Atsii S. Detection of dental caries under fixed dental
prostheses by analyzing digital panoramic radiographs with artificial in-
telligence algorithms based on deep learning methods. BMC Oral Health.
2025;25:216. doi: 10.1186/512903-025-05577-3

77. Kovacs KA, Kerepesi C, Rapcsdk D, et al. Machine learning prediction
of breast cancer local recurrence localization, and distant metastasis after
local recurrences. Sci Rep. 2025;15:4868. doi: 10.1038/s41598-025-89339-9
78.Guo L, Wang W, XieX, et al. Machine learning-based mod-
els for genomic predicting neoadjuvant chemotherapeutic sensi-
tivity in cervical cancer. Biomed Pharmacother. 2023;159:114256.
doi: 10.1016/J.BIOPHA.2023.114256

79. Zhao Y, Fu Z, Barnett EJ, et al. Genome data based deep learn-
ing identified new genes predicting pharmacological treatment response
of attention deficit hyperactivity disorder. Transl Psychiatry. 2025;15:46.
doi: 10.1038/s41398-025-03250-5

80. Ivakhnenko AG, Lapa VG. Cybernetic predictive devices. Kyiv: Naukova
Dumka; 1965. 214 p. URL: https://gwern.net/doc/ai/1966-ivakhnenko.pdf
81. Ivakhnenko AG. Polynomial theory of complex systems. In: [EEE Trans.
Syst. Man Cybern. 1971. Vol. 1. P. 364-378. doi: 10.1109/TSMC.1971.4308320
82. Vapnik VN, Chervonenkis AJ. On one class of learning algorithms for
pattern recognition. Automation and Remote Control. 1964;25:937-945.
(In Russ.)

83. Boltyansky VG, Gamkrelidze RV, Pontryagin LS. To the theory of opti-
mal processes. Reports of the USSR Academy of Sciences. 1956;110:7-10.
(In Russ.)

84. Galushkin Al. Synthesis of multilayer systems of pattern recognition.
Moscow: Energia; 1974. (In Russ.)

0b ABTOPAX

*AkceHoBa AHHa l0pbeBHa, KaH[l. 610N, Hayk;

appec: Poccus, 199034, Cankr-INetepbypr, YHvBepcuTeTckas Hab., 1. 7/9;
ORCID: 0000-0002-1601-1615; eLibrary SPIN: 4914-7675;

e-mail: a.aksenova@spbu.ru

Xyk Anna CepreeBHa, KaHg. b1on. HayK, [JOLEHT;
ORCID: 0000-0001-8683-9533; eLibrary SPIN: 2223-5306;
e-mail: ania.zhuk@gmail.com

CrenyeHkoBa EneHa UropeBHa, kaHp. 610N, HayK;
ORCID: 0000-0002-5854-8701; eLibrary SPIN: 9121-7483;
e-mail: stepchenkova@gmail.com



https://orcid.org/0000-0002-1601-1615
https://www.elibrary.ru/author_profile.asp?spin=4914-7675
mailto:a.aksenova@spbu.ru
https://orcid.org/0000-0002-1601-1615
https://www.elibrary.ru/author_profile.asp?spin=4914-7675
mailto:a.aksenova@spbu.ru
https://orcid.org/0000-0001-8683-9533
https://www.elibrary.ru/author_profile.asp?spin=2223-5306
mailto:ania.zhuk@gmail.com
https://orcid.org/0000-0001-8683-9533
https://www.elibrary.ru/author_profile.asp?spin=2223-5306
mailto:ania.zhuk@gmail.com
https://orcid.org/0000-0002-5854-8701
https://www.elibrary.ru/author_profile.asp?spin=9121-7483
mailto:stepchenkova@gmail.com
https://orcid.org/0000-0002-5854-8701
https://www.elibrary.ru/author_profile.asp?spin=9121-7483
mailto:stepchenkova@gmail.com
https://doi.org/10.1093/BIB/BBAD313
https://doi.org/10.1038/s41580-024-00768-2
https://doi.org/10.1016/J.COMPBIOMED.2024.108561
https://doi.org/10.1093/BIB/BBAB454
https://doi.org/10.1016/j.tips.2023.06.010
https://doi.org/10.1016/j.cels.2021.06.006
https://doi.org/10.1016/j.compbiomed.2024.108620
https://doi.org/10.3389/FMOLB.2024.1414916
https://doi.org/10.1002/anie.202303526
https://doi.org/10.3389/FBINF.2023.1120370
https://doi.org/10.1016/J.SBI.2022.102526
https://doi.org/10.1038/S41592-020-0848-2
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1093/BIB/BBAD333
https://doi.org/10.1093/BIB/BBAD131
https://doi.org/10.3389/fbioe.2023.1226182
https://doi.org/10.1186/s12911-025-02892-1
https://doi.org/10.2196/66269
https://doi.org/10.1186/s12903-025-05577-3
https://doi.org/10.1038/s41598-025-89339-9
https://doi.org/10.1016/J.BIOPHA.2023.114256
https://doi.org/10.1038/s41398-025-03250-5
https://gwern.net/doc/ai/1966-ivakhnenko.pdf
https://doi.org/10.1109/TSMC.1971.4308320

PROBLEMS IN GENETIC
EDUCATION

Viacheslav A. Semenikhin; ORCID: 0000-0001-6923-0363;

eLibrary SPIN: 2251-5652; e-mail: vasemenikhin@hse.ru

Mikhail A. Langovoy, Dr. rer. nat.;
ORCID: 0000-0002-7593-0830; eLibrary SPIN: 6905-9451;
e-mail: mikhail@langovoy.com

https://doi.org/10.17816/ecogen637074

IKOMOTMYECKan TeHeTVKa
Vol. 23 (2) 2025 Ecological genetics

CeMeHunxuH Bsauecnas Anekceesuy; ORCID: 0000-0001-6923-0363;
eLibrary SPIN: 2251-5652; e-mail: vasemenikhin@hse.ru

Jlanrosot Muxaun Anatonbesuy, Dr. rer. nat.;
ORCID: 0000-0002-7593-0830; eLibrary SPIN: 6905-9451;
e-mail: mikhail@langovoy.com

219


https://orcid.org/0000-0001-6923-0363
https://www.elibrary.ru/author_profile.asp?spin=2251-5652
mailto:vasemenikhin@hse.ru
https://orcid.org/0000-0001-6923-0363
https://www.elibrary.ru/author_profile.asp?spin=2251-5652
mailto:vasemenikhin@hse.ru
https://orcid.org/0000-0002-7593-0830
https://www.elibrary.ru/author_profile.asp?spin=6905-9451
mailto:mikhail@langovoy.com
https://orcid.org/0000-0002-7593-0830
https://www.elibrary.ru/author_profile.asp?spin=6905-9451
mailto:mikhail@langovoy.com

	A New Era of Bioinformatics

	Abstract

	To cite this article



	Новая эра биоинформатики

	Аннотация

	Как цитировать


	Subject and Tasks of Bioinformatics, and its Role in Medicine and Fundamental and Applied Biology 
	Role of Fundamental Mathematical Knowledge in the Training of Highly Qualified Bioinformatics Scientists 
	Conclusion

	Additional Info 
	Дополнительная информация

	References

	Authors' Info

	Об авторах




