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ABSTRACT
BACKGROUND: Molecular chaperones regulate the proper folding of proteins in the cell. Members of the Hsp70 family, includ-
ing the Ssa1 protein, are molecular chaperones that prevent protein aggregation, promote their proper folding and degradation, 
and are the most common among the various chaperones, highly conserved, and present in a variety of organisms.
AIM: The aim of the work was to optimize methods for the production, extraction and purification of Ssa1 protein from cells of 
Saccharomyces cerevisiae.
MATERIALS AND METHODS: The SSA1-4 gene sequences were cloned into a vector under the control of the TEF1 promoter 
and fused with a sequence encoding His6-tag. Yeast strains with different genetic backgrounds were transformed with the ob-
tained constructs, and the production of Ssa1-4 proteins was assessed under different cultivation conditions. Affinity and ion-
exchange chromatography were used to purify the Ssa1 protein. Fluorescence microscopy was used to confirm the localization 
of recombinant Ssa proteins fused with TagRFP-T in the cytosol. 
RESULTS AND CONCLUSIONS: Methods for the production, extraction and purification of Ssa1 protein from yeast cells have 
been optimized. The same approach can be further used to purify other Hsp70 proteins and adapted to obtain various proteins 
from eukaryotic cells.
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АННОТАЦИЯ
Обоснование. Молекулярные шапероны регулируют правильную укладку белков в клетке. Члены семейства Hsp70, 
включая белок Ssa1, — это молекулярные шапероны, которые предотвращают агрегацию белков, способствуют их 
правильному сворачиванию и деградации, они являются наиболее распространенными среди различных шаперонов, 
высококонсервативными и присутствуют в различных организмах. 
Цель — оптимизация методов продукции, выделения и очистки белка Ssa1 из клеток Saccharomyces cerevisiae.
Материалы и методы. Последовательности генов SSA1-4 были клонированы в вектор под контролем промотора 
гена TEF1 и слиты с последовательностью, кодирующей His6-тэг. Штаммы дрожжей с различным генетическим фо-
ном трансформировали полученными конструкциями и оценивали продукцию белков Ssa1-4 при различных условиях 
культивирования. Для очистки белка Ssa1 использовали методы аффинной и ионообменной хроматографии. Для под-
тверждения локализации рекомбинантных белков Ssa, слитых с TagRFP-T, в цитоплазме применяли флуоресцентную 
микроскопию. 
Результаты и заключение. Оптимизированы методы продукции, выделения и очистки белка Ssa1 из дрожжевых 
клеток. Этот же подход может быть в дальнейшем использован для очистки других белков семейства Hsp70 и адап-
тирован для получения различных белков из эукариотических клеток.
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BACKGROUND
Molecular chaperones are polypeptides responsible for 

the correct folding of proteins in the cell. During their life-
time, cells constantly adapt to changing conditions. Among 
different chaperons the members of the Hsp70 (70-kDa 
heat-shock protein) family are the most abundant and high-
ly conserved among different organisms (reviewed in [1]). 
The Hsp70 family proteins are molecular chaperones that pre-
vent protein aggregation, promote their proper folding and de-
gradation, thereby being key factors in the ability of cells to 
maintain proteostasis. Thus, given the involvement of these 
proteins in a variety of cellular processes, it is not surprising that 
they are considered as targets for the treatment of various hu-
man diseases, such as cancer and neurodegenerative diseases.

Hsp70 proteins act together with co-chaperons, such 
as members of the Hsp40 family, which contribute to the 
specificity of Hsp70 interactions. They also require the nu-
cleotide exchange factors (NEFs) as their activity is ATP-de-
pendent [2]. Both of these types of auxiliary factors are usu-
ally represented by multiple proteins in different organisms. 
The Hsp70 proteins of the yeast Saccharomyces cerevisi-
ae are divided into seven subfamilies: four canonical-type 
Hsp70 chaperones (Ssa, Ssb, Kar, and Ssc) and three atypical 
Hsp70 proteins (Sse, Ssz, and Lhs) that play a regulatory role 
by modulating the activity of canonical Hsp70 partners [3]. 
All Hsp70 proteins contain two functional domains: NBD (Nu-
cleotide Binding Domain) at the N-terminus and SBD (Sub-
strate Binding Domain) at the C-terminus which are connect-
ed by a short interdomain linker [1]. The Ssa (Stress Seventy 
sub-family A) subfamily includes four main members (Ssa1, 
Ssa2, Ssa3 and Ssa4). While none of the four corresponding 
SSA genes is essential, at least one of them must be present 
for viability [4, 5]. The four members of the SSA subfamily 
arose through duplications and are highly conserved. De-
spite sequence similarity the corresponding proteins may be 
functionally distinct and act in different ways. While SSA2 is 
expressed constitutively at high levels, the SSA3-4 are ex-
pressed only during cellular stress, and SSA1 is constitutively 
expressed at moderate levels, but is also upregulated during 
stress [6, 7]. Ssa proteins also differ in their stability, with 
Ssa4 being the most stable (half-life greater than 100 h) and 
Ssa3 having a half-life of 11.0 h [8].

Several functional differences between Ssa proteins 
were found when characterizing their effects on yeast 
prions. Yeast possesses nearly 20 naturally occurring 
prions, the most well studied of which are [PSI+], [PIN+], and 
[URE3] (reviewed in [9]). Propagation of yeast prions is de-
pendent on the cellular chaperone machinery, essentially, 
the Hsp104/Hsp70/Hsp40 system. Hsp104 is a molecular dis-
aggregase capable of breaking apart prion aggregates thus 
promoting their division and inheritance. However, in order 
to perform its function, Hsp104 has to be recruited by the 
Hsp70-Ssa, which in turn binds prion aggregates in complex 
with Hsp40 co-chaperones (reviewed in [10]).

Despite sequence similarities, Ssa proteins differ in some 
of their effects on prion propagation. For example, oppos-
ing effects on the curing of [URE3] have been reported for 
nearly identical Ssa1 and Ssa2, although, these effects were 
not reproducible in other strains [11, 12]. Similarly, opposing 
effects on [PSI+] were occasionally observed for Ssa3 and 
Ssa4 [13, 14]. The SSA1-21 (L483W) mutation was first de-
scribed by its dominant [PSI+]-curing phenotype. Even though 
it does not affect propagation of [URE3], introduction of the 
same mutation into the SSA2 gene severely destabilizes 
[URE3] [15]. Finally, Ssa proteins demonstrate various ef-
fects on prion propagation when they are expressed from 
the only copy of SSA gene from constitutive promoter of 
the SSA2 gene, particularly, Ssa1 and Ssa2, but not Ssa3, 
or Ssa4 are able to maintain the [URE3]. While all four Ssa 
are able to maintain [PSI+], Ssa4 specifically weakened 
its propagation [16].

The role of the Ssa proteins is not limited to chaper-
one activity and prion propagation. Particularly, Ssa pro-
teins participate in the translocation of proteins into the 
mitochondria and endoplasmic reticulum [17, 18]. Addi-
tionally, Ssa1/2 proteins function in cell cycle progression 
and DNA-damage response as they were shown to act in 
G2/M checkpoint regulation after UV irradiation. Ssa1/2 
were found to take part in a complex with DNA damage 
checkpoint protein Rad9 which either includes the effec-
tor kinase Rad53, or does not, which affects the Rad9 
phosphorylation. Interestingly, Ssa3 or Ssa4 can also be 
recruited to the Rad9 complex, but unable to substitute for 
the Ssa1/Ssa2 function [19].

Given the importance of the Hsp70 proteins for the prion 
propagation, as well as other cellular processes, we aimed 
at studying their properties in vitro. As the Ssa proteins are 
stable and abundant in yeast cells, these chaperones can be 
extracted directly from yeast, as shown for Ssa1 in earlier 
studies. Various approaches can be used for the purification 
of the Ssa proteins from yeast cells. For example, Ssa1/2 
proteins were extracted from complexes with Rad9 and 
Rad53 after co-precipitation with heparin-affinity chroma-
tography of hemagglutinin-tagged Rad9 [19]. Another ap-
proach utilized ATP-dependence of the Hsp70 chaperones 
by employing ATP-affinity purification, followed by anion ex-
change chromatography [20]. Immunoprecipitation was also 
used for the Ssa1/2 proteins [17]. All the aforementioned ap-
proaches are poorly suited for distinguishing nearly identical 
Ssa1 and Ssa2 proteins, which can be overcome by producing 
a tagged protein. In case of polyhistidine-tagged proteins, 
affinity purification using chelating sepharose was success-
fully used [21].

We aimed to use a similar approach with Ni-NTA aga-
rose for the extraction of His6-tagged proteins. In this work, 
we developed and optimized the techniques allowing for the 
extraction and purification of various Hsp70 proteins from 
yeast cells which required optimization of conditions for their 
production.
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MATERIALS AND METHODS
Strains and media

Escherichia coli strain DH5α [22] was used for the plas-
mid selection, maintenance and amplification. S. cerevisiae 
strains used in this work are listed in Table 1. Standard 
methods of cultivation and manipulation of yeast and bacteria 
were used throughout this work [23, 24]. Yeast strains were 
cultivated at 30 °C in standard solid and liquid media: YEPD 
(rich media), or either of the two types of selective media 
were used. SC (synthetic complete) media has 6.7 g/L yeast 
nitrogen base (YNB) with ammonium sulfate (Invitrogen) as its 
core component. Alternatively, synthetic minimal media (Min) 
was used, which contains of 0.5 g of MgSO4·7H2O, 3.5 g 
of (NH4)2SO4, 0.1 g of K2HPO4, 0.9 g of KH2PO4, 0.2 mg of 
thiamine, 0.002 mg of biotin, and 0.5 mg of β-alanine per 
litre [25]. Both SC and minimal media contained all supplements 
required to compensate for all the auxotrophies of all strains, 
specifically, adenine, L-tryptophane, L-leucine, L-lysine, 

L-histidine, L-methionine, and L-threonine at concentrations 
described in [23]. The uracil was omitted, which was neces-
sary for maintaining URA3 plasmids.

Yeast transformation was performed as described [26].

Fluorescence microscopy
Yeast cells from liquid cultures grown to mid-log phase 

(OD600 = 0.4–0.6) were analyzed using Zeiss Axioscope A1 
wide-field fluorescence microscope equipped with a Zeiss 
AxioCam 506 Color camera. Images were acquired using 
Zeiss Zen software.

Plasmids
Plasmids used in this work are listed in Table 2.
The pTEF-His6-SSA2 plasmid was generated by ampli-

fication of the SSA2 gene fragment from the pDM64 plas-
mid with the Ssa2-BamH1(-1)-F and Ssa2-BcuI-R primers. 
The amplified PCR fragment was digested with the BamHI 
and BcuI restriction enzymes and ligated into the backbone 

Table 1. Yeast strains used in this work

Strain Genotype Reference

74-D694 MATa ade1-14 his3-Δ200 ura3-52 leu2-3,112 trp1-289 [psi –] [PIN+] [27]

OT56 74-D694 [PSI+]S [PIN+] [28]

prb1Δ0-P-74-D694 74-D694 prb1Δ0 [PSI+] [PIN+] [29]

prb1Δ0-2-74-D694 74-D694 prb1Δ0 [psi –] [pin –] [30]

yAO066 74-D694 prb1Δ::HIS3MX [psi –] [PIN+] [31]

yAO121 74-D694 pep4Δ::HIS3MX [psi –] [PIN+] [31]

P2.1.1-yAO121 74-D694 pep4Δ::HIS3MX [PSI+]S [PIN+] [30]

2-yAO121 74-D694 pep4Δ::HIS3MX [psi –] [pin –] [30]

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 [32]

prb1Δ-BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 prb1::KanMX [29]

Table 2. Plasmids used in this work

Plasmid Description Reference

pRS316 AmpR, CEN, URA3 [33]

pTEF-SSA1 AmpR, CEN, URA3, PTEF1-His6-Xpress-SSA1 [34]

pTEF-SSA1021 AmpR, CEN, URA3, PTEF1-His6-Xpress-SSA1-21 [10]

pDM64 AmpR, CEN, HIS3, PSSA2-SSA2 [11]

pTEF-SSA3 AmpR, CEN, URA3, PTEF1-SSA3 [13]

pTEF-SSA4 AmpR, CEN, URA3, PTEF1-SSA4 [13]

pTEF-His6-SSA2 AmpR, CEN, URA3, PTEF1-His6-Xpress-SSA2 This work

pTEF-His6-SSA3 AmpR, CEN, URA3, PTEF1-His6-Xpress-SSA3 This work

pTEF-His6-SSA4 AmpR, CEN, URA3, PTEF1-His6-Xpress-SSA4 This work

pIM35 AmpR, CEN, URA3, PMET17-yTagRFP-T [35]

pTEF-His6-yTagRFP-T-SSA1 AmpR, CEN, URA3, PTEF1-His6-Xpress-yTagRFP-T-SSA1 This work

pTEF-His6-yTagRFP-T-SSA1-21 AmpR, CEN, URA3, PTEF1-His6-Xpress-yTagRFP-T-SSA1-21 This work

pTEF-His6-yTagRFP-T-SSA2 AmpR, CEN, URA3, PTEF1-His6-Xpress-yTagRFP-T-SSA2 This work

pTEF-His6-yTagRFP-T-SSA3 AmpR, CEN, URA3, PTEF1-His6-Xpress-yTagRFP-T-SSA3 This work

pTEF-His6-yTagRFP-T-SSA4 AmpR, CEN, URA3, PTEF1-His6-Xpress-yTagRFP-T-SSA4 This work
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of the pTEF-SSA1 plasmid digested with the same enzymes. 
For the construction of the pTEF-His6-SSA4 plasmid the 
same approach was used; for the amplification of SSA4 
Ssa4-BamHI(-1)-F and Ssa4-BcuI-R primers and pTEF-
SSA4 plasmid were used. pTEF-His6-SSA3 was obtained as 
follows: the SSA3 gene fragment was first amplified using 
Ssa3-BamHI(–1)-F and T7 20-mer primers from pTEF-SSA3. 
The BamHI-EcoRI fragment of the amplified product was in-
serted into pTEF-SSA1 in place of the SSA1-containing frag-
ment resulting in pTEF-His6-SSA3ΔC. Finally, the XbaI-XbaI 
fragment of pTEF-SSA3 was replaced by analogous frag-
ment from pTEF-His6-SSA3ΔC containing His6-tag sequence, 
yielding pTEF-His6-SSA3. The pTEF-His6-yTagRFP-T-SSA1 
was constructed as follows: first, a fragment containing the 
yTagRFP-T gene was generated by amplification of a frag-
ment from the pIM35 plasmid with the pBlueScr-SK and 
yTR-T-ns-R-NheI primers (Table 3). The amplified PCR frag-
ment was then digested with the NheI and BcuI restriction 
enzymes and ligated into the backbone of the pTEF-SSA1 
plasmid digested with NheI. For the construction of the 
pTEF-His6-yTagRFP-T-SSA1-21 pTEF-His6-yTagRFP-T-SSA2, 
pTEF-His6-yTagRFP-T-SSA3 and pTEF-His6-yTagRFP-T-SSA4 
plasmids the same approach was used.

All plasmid constructions were verified by sequencing 
in the Resource Center “Development of Molecular and Cell 
Technologies” of Saint Petersburg State University.

Protein analysis
Cells for protein extraction were grown in liquid media at 

30°C with shaking at 200 rpm until reaching OD600 = 0.6–0.8 
or stationary phase (OD600 = 2). The modified alkaline lysis 
method [36, 37] was employed for the analysis of protein 
amount with SDS-PAGE. Briefly, cells were pelleted and 
washed twice in water. Cell pellets were incubated for 5 min 

Table 3. Primers used in this work

Primer Sequence (5' → 3')

Ssa2-BamH1(-1)-F atattggatcctatgtctaaagctgtcggtattgat

Ssa2-BcuI-R gaccactagtcttaatcaacttcttcgacagttggacc

Ssa3-BamHI(-1)-F aacaggatcctatgtctagagcagttggtattg

T7 20-mer taatacgactcactataggg

Ssa4-BamHI(-1)-F aacaggatcctatgtcaaaagctgttggtattg

Ssa4-BcuI-R gtactagtctaatcaacctcttcaaccgttg

pBlueScr-SK tctagaactagtggatc

yTR-T-ns-R-NheI ccagctagccttatacaattcgtccataccgt

with 2 M lithium acetate (LiAc) on ice. LiAc-treated cells 
were then centrifuged, the supernatant was discarded, and 
the cells were resuspended in 0.4 M NaOH and placed on 
ice for 5 min. After centrifugation pellets were resuspended 
in Laemmli buffer (60 mM Tris-HCl pH 6.8, 2% SDS, 10% 
glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue), 
boiled for 5 min, and cleared by centrifugation before separa-
tion by SDS-PAGE. After electrophoresis proteins were eluted 
onto PVDF membrane by semi-dry transfer and visualized 
with Western blot hybridization [24]. Antibodies used are 
present in Table 4. The antibodies used to detect the Ssa 
proteins (anti-Hsp70) were IgM, hence, required compatible 
secondary antibodies; anti-mouse IgG H&L were used for this 
purpose. Immunoblots were detected using ECL Select West-
ern Blotting Detection Reagent (GE Healthcare) and GeneG-
nome hardware and software (Syngene).

Purification of recombinant proteins
For the purification of the His6-Ssa proteins at least 500 ml 

of yeast cells from liquid culture were first harvested by cen-
trifugation. The pelleted cells were then washed and frozen in 
–80°C. Total protein lysate was extracted in non-denaturing 
conditions using glass beads technique [38, 39]. The lysis 
buffer used was 20 mM TrisHCl, 500 mM NaCl, 10% glycerol 
and 10% protease inhibitors cocktail (Sigma #P8215-5ML). 
The crude lysate was clarified by centrifugation at 4°C at 
800 g for 10 minutes. The supernatant was then loaded into 
a 5 ml HiTrap HP Ni-NTA agarose column (GE Healthcare). 
The NGC chromatography system (BIO-RAD) was used for 
the purification procedure. The buffer for the column wash 
was the same as the lysis buffer, but without protease in-
hibitors and containing 10 mM imidazole. The elution buffer 
contained 250 mM imidazole. The elution was performed by 
increasing a proportion of elution buffer to the wash buffer 

Table 4. Antibodies used in this work

Name Dilution Antigene Reference

Anti-His6 1:4000 His6-tag GE Healthcare, #27471001

Peroxidase-labeled anti-mouse 1:10000 mouse IgG GE Healthcare, #NIF 825

Anti-Hsp70 [2A4] 1:3750 human Hsp70 437-479 fragment Abcam, #ab5442

Peroxidase-labeled goat anti-mouse IgG H&L 1:10000 mouse IgG H&L Abcam, #ab205719
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creating a linear gradient of imidazole concentrations. Frac-
tions were collected using an automated fraction collector 
(BIO-RAD) and checked by SDS-PAGE. Fractions with the 
highest content of the Ssa protein were then concentrated 
using AmiCon Ultra15 centrifugal concentrators with a 3 kDa 
molecular weight cutoff (Millipore). The buffer was simulta-
neously changed to the Ssa storage buffer (20 mM TrisHCl, 
pH 7.6, 50 mM KCl, 5 mM BME, 10% glycerol). Additional 
purification was performed with anion exchange chroma-
tography using HiTrap Q HP 5 ml column (GE Healthcare). 
The start buffer used was 20 mM TrisHCl, pH 7.6, 100 mM KCl, 
6 mM BME, 5% glycerol; the elution buffer was the same, 
except the concentration of KCl was 500 mM.

RESULTS AND CONCLUSION
Selection of a S. cerevisiae strain optimal for 
producing the chaperone Ssa1

Various strains are known to differ in the abundance of 
molecular chaperones [40] making the choice of strain for 
the production of the Hsp70 chaperones to be critical. Several 
factors may affect the chaperone abundance; among them is 
the genetic background which depends on the strain ances-
try. Another factor is the constant presence of the heritable 
misfolded proteins, such as prions, as their aggregates are 
known to sequester some cytosolic chaperones, including 

Hsp70s, thus affecting their overall abundance either directly 
or by compensatory feedback mechanisms (reviewed in [10]). 
The strain of choice also should demonstrate rapid growth 
and high stability of the protein of interest. We selected 
strains with either BY4741/BY4742 or 74-D694 genetic back-
ground, which ascend either to the reference S288C strain or 
Peterhof genetic lineage, respectively. We tested strains of 
both origins with deletions of vacuolar proteases (prb1Δ and 
pep4Δ). We also tested variants containing [PSI+] and [PIN+] 
prions in different combinations.

Strains of S. cerevisiae specified in Table 1 were trans-
formed with pTEF-SSA1 or pTEF-SSA1-21 plasmids. Trans-
formants were selected at the solid SC-Ura media, grown 
in the same liquid media and tested by SDS-PAGE followed 
by immunoblotting. The liquid cultures were typically grown 
to mid- or late-log phase, in which the majority of cells are 
actively growing and dividing, however, several Ssa proteins 
are known to increase their abundance during transition to 
the stationary phase [4]. We therefore additionally assessed 
the protein levels in three strains grown to the stationary 
phase. For the detection of Ssa1 two types of antibodies 
were used: anti-Hsp70 and anti-His6 (Fig. 1). The anti-Hsp70 
antibodies we used are able to recognize all four Ssa pro-
teins, thus, we were able to detect not only the overproduced 
His6-Ssa1 protein, but also the Ssa proteins produced from 
their respective endogenous loci. As a result, we could 

Fig. 1. Comparison of Ssa1 production levels in different yeast strains by immunoblotting. pTEF-SSA1 (a) or pTEF-SSA1-21 (b) plasmids were used 
for transformation. Total protein was visualized using Coomassie R250 membrane staining. log, yeast culture in logarithmic  (OD600 = 0.7–1.0), stat, 
in stationary (OD600 = 2) growth phase. Anti-His6 and anti-Hsp70 antibodies were used. Strains selected for further analysis are marked with aste-
risks. The order of the strains in panel A is as follows (from left to right): OT56, 74-D694, P2.1.1-yAO121, yAO121, 2-yAO121, prb1Δ0-P-74-D694, 
prb1Δ0-2-74-D694, yAO066, prb1Δ-BY4741, BY4742, yAO066 (stat), prb1Δ-BY4741(stat), BY4742(stat). The order of the strains in panel B is as follows 
(from left to right): OT56, 74-D694, P2.1.1-yAO121, yAO121, 2-yAO121, prb1Δ0-P-74-D694, prb1Δ0-2-74-D694, prb1Δ-BY4741, BY4742, yAO066 (stat), 
prb1Δ-BY4741(stat), BY4742(stat).
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observe two bands on the western blot, the upper correspond-
ing to the heavier His6-Ssa1, and the lower representing the 
mix of native Ssa1-4 proteins. This allowed us to compare 
the abundance of the overproduced protein to the natively 
produced Ssa. We also used another approach, in which we 
compared the relative amounts of the overproduced protein 
using total protein load as a reference. Comparison of differ-
ent strains in different growth phases allowed us to select the 
prb1Δ-BY4741 and yAO121 strains growth to the logarithmic 
phase for further analysis.

Selection of optimal conditions 
for incubation of yeast culture for 
the production of His6-Ssa1

As members of a heat shock protein group, some of 
the Ssa proteins, including Ssa1, are known to be produced 
in increased amounts during heat shock and other stress 
conditions [4]. To find out whether growth at elevated tem-
peratures affects the amount of the overproduced Ssa1, we 
incubated the transformants of the selected strains at dif-
ferent temperatures (30°C, 37°C and 42°C). Western blot 
hybridization was then performed with antibodies to Hsp70. 
We found that the His6-Ssa1 and His6-Ssa1-21 proteins were 
most actively produced in the prb1Δ-BY4741 strain at 30°C 
(Fig. 2, a). Elevated temperatures indeed increased the pro-
duction of native Hsp70s, however, this did not affect the pro-
duction of His6-tagged proteins regulated by the constitutive 

TEF1 promoter. Our observations confirm that the temper-
ature-dependent production of the Hsp70 mostly relies on 
their transcriptional regulation, while the expression of the 
SSA1 gene under control of non-native constitutive promoter 
remains unaffected by increasing temperature.

The composition of the media for cell culture growth, 
specifically, shortage of rich carbon or nitrogen sources may 
also promote stress reactions in cells. We thus decided to 
compare the efficiency of cultivation and protein production 
in YNB-based SC medium and in salt-based minimal (Min) 
medium (both without uracil). The level of protein produc-
tion in the minimal salt-based medium was slightly lower, 
but in the lysates of yeast grown in SC-Ura and visualized 
using antibodies to Hsp70, an additional band was occasion-
ally observed (Fig. 2, b). Presence of a band corresponding 
to a protein with lower molecular weight which is bound by 
anti-Hsp70 antibodies may point to the proteolysis of Hsp70 
occuring during growth in SC medium. Due to this, and also 
in order to optimize costs, it was decided to continue further 
work with Hsp70 in a salt-based minimal medium without 
uracil.

Production of chaperones Ssa2, Ssa3 
and Ssa4

Having selected the optimal conditions for the production 
of the Ssa1 and Ssa1–21 chaperones, we checked whether 
they were also suitable for production of Ssa2, Ssa3, and 

Fig. 2. Comparison of Ssa1 production levels in the selected strains under different conditions: a, yAO121 and prb1Δ-BY4741 transformants from 
fig. 1 were first grown in 30°C to mid-log phase (OD600 = 0.4–0.6), and then incubated at the indicated temperatures for 4 hours: b, Strain prb1Δ-BY4741 
was transformed with pTEF-SSA1, pTEF-SSA1-21, or pRS316 (e.v., empty vector) plasmids; the selected transformants were grown at SC-Ura (SC) 
or Min-Ura (Min) media at 30°C to the late-log phase. Two independent transformants are shown in each case. Shown are results of western blot analysis. 
Total protein was visualized using Coomassie R250 membrane staining.

a

b
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Ssa4. We transformed the prb1Δ-BY4741 strain with the plas-
mids pTEF-His6-SSA2, pTEF-His6-SSA3, and pTEF-His6-SSA4 
and compared the protein production levels in SC-Ura and 
Min-Ura (Fig. 3). As in the case of Ssa1 and Ssa1-21, it 
was decided to cultivate the transformed yeast cells in a 
minimal medium without the addition of uracil. Both con-
ditions appeared to be suitable for the chaperone produc-
tion, confirming the choice of a minimal medium as optimal. 
It should be noted that the observed levels of Ssa4 were 
significantly lower than Ssa3 when detected by the anti-
Hsp70 antibodies. No such difference was observed when 
anti-His6 antibodies were used. It is likely that the affinity 
of the anti-Hsp70 antibodies we used was lower for the 
Ssa3 protein, even though the sequences of the fragments 
homologous to the implied epitope are nearly identical in all 
the Ssa proteins.

Thus, we were able to select the most suitable strain and 
conditions for the production of chaperones Ssa1, Ssa1-21, 
Ssa2, Ssa3 and Ssa4. The experiments also confirmed the 
suitability of the vector constructs we obtained for protein 
production in yeast cells.

Determination of the intracellular 
localization of Ssa chaperones using fluorescence 
microscopy

Addition of tags on the N-terminus can affect properties 
of a protein including its localization which in turn may result 
in decreasing yield of a purified protein. We checked whether 
tagged variants of the Ssa proteins retained their cytosolic 
localization. In order to visualize distribution of the Ssa pro-
teins we constructed variants with red fluorescent protein 
gene yTagRFP-T inserted in-between the His6-tag and read-
ing frame of the respective gene. We transformed the OT56 
([PSI+]) and 74-D694 ([psi –]) strains with the resulting five 
plasmids and analyzed the cells of the transformants using 
fluorescence microscopy. In all cases we observed diffuse 
distribution in most of the cells (Fig. 4). Cells with hetero-
geneously distributed proteins forming clumps or multiple 
foci could also be observed, however, they were rare. Such 
cells could be found in both [PSI+] and [psi–] cells producing 
either of the Ssa protein variants studied. These results sug-
gest that N-terminally tagged Ssa proteins are predominantly 
localized in cytosol, and thus can be purified from the fraction 
of soluble proteins.

Production and purification of the Ssa1 chaperone
We then attempted to purify the Ssa1 protein from cells 

grown at the selected conditions. Purified preparations of the 
His6-Ssa1 protein was obtained using affinity chromatogra-
phy (Fig. 5, a). Several additional proteins appeared to also 
bind the Ni-NTA agarose, with some of them of similar mo-
lecular weight to the His6-Ssa1. Thus, some of the obtained 
fractions were tested by Western blot for the presence of 
the target protein. We confirmed that His6-Ssa1 was pres-
ent in the elution fractions as it binded both anti-Hsp70 and 
anti-His6 antibodies (Fig. 5, b). The major co-purified protein, 
which was slightly less massive than Hsp70, reacted only to 
the anti-His6 antibodies (Fig. 5, b).

Due to the insufficient purity of the obtained preparations, 
the fractions were concentrated, and the buffer was replaced, 
after which the samples were subjected to additional pu-
rification by anion exchange chromatography (Fig. 5, c). 
The protein amounts in the resulting fractions were then 
assessed using SDS-PAGE. This allowed us to obtain frac-
tions with significantly reduced amounts of non-target pro-
tein. Overall, the combination of affinity and anion exchange 
chromatography proved to be effective for purification of the 
Ssa1 protein from yeast cells. The same approach may be 
further used for purification of Ssa2, Ssa3, and Ssa4 proteins, 
and, in principle, can be adapted for in vitro studies of other 
yeast proteins.

Fig. 3. Selection of a medium for the production of Ssa2, Ssa3 and 
Ssa 4. Strain prb1Δ-BY4741 was transformed with pTEF-His6-SSA2, 
pTEF-His6-SSA3 and pTEF-His6-SSA4; selected transformants were grown 
in SC-Ura (SC) or Min-Ura (Min) media at 30°C until OD600 = 0.8–1.1, 
and then subjected to protein extraction and western blotting.

Fig. 4. The analysis of intracellular distribution of Ssa proteins. OT56 
([PSI+]) and 74-D694 ([psi –]) strains were transformed with a series of 
pTEF-His6-yTagRFP-T-SSA plasmids. The resulting transformants were 
analyzed using fluorescence microscopy. BF, bright field.
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