GENETIC JKONOMMYECKan reHeTrKa

TOXICOLOGY Vol. 19(3) 2021 Ecological genetics
DOI: https://doi.org/10.17816/ecogen70691 | '.)
Genotoxic properties of hypoglycemic drugs | hecklor |

(systematic review)
© Natalya V. Eremina, Aliy K. Zhanataev, Artem A. Lisitsyn, Andrey D. Durnev

Zakusov Research Institute of Pharmacology, Moscow, Russia

According to the literature genotoxic properties of about a half of hypoglycemic drugs have not been investigated in accor-
dance with the recommended methodology, and studies of the mutagen-maodifying activity of antidiabetic drugs are sporadic.
Based on the available published data, it is impossible to conclude about either presence or absence of genotoxic / antigeno-
toxic potential of antidiabetic drugs. There is evidence of the antimutagenic activity of metformin; in relation to other drugs,
studies of mutagen-modifying activity have not been carried out or are represented only by a few articles. Further study of the
genotoxic properties of hypoglycemic drugs is required in accordance with modern approaches and requirements, as well as
an assessment of their mutagen-modifying activity.
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Ananus NUTepaTtypHbIX OdHHbIX MOKa3as, YTO OKO0/1I0 MOJIOBUHbI TUNOrTMKEMUYECKUX NpenapaTtoB He WUCCnen0BaHbl
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INTRODUCTION

Diabetes mellitus (DM) refers to a group of metabolic
diseases characterized by abnormally increased plasma
glucose concentrations or hyperglycemia, and is clas-
sified as type 1 (T1DM) or type 2 (T2DM). If untreated,
DM leads to chronic degenerative diseases of the heart,
kidneys, and the nervous system, including the retina.
The International Diabetes Federation has characte-
rized DM as a global epidemic [1]. By 2030, the number
of patients with T2DM is predicted to increase globally
to 439 million people [2].

Numerous epidemiological studies and meta-analy-
ses indicate a link between DM and cancer incidence, as
well as mortality from liver, pancreatic, colon, kidney,
endometrial, and breast cancer [3]. Patients with a com-
bination of DM and cancer have an increased risk of mor-
tality from any cause compared with patients without
a history of DM [4].

Mutagenesis has been generally recognized and com-
prehensively substantiated to trigger carcinogenesis [5, 6].
The increase in markers of genotoxicity in DM pa-
tients was noted repeatedly. It is associated with
the formation of genotoxic reactive oxygen species
(ROS) during hyperglycemia-induced oxidative stress
[7-11].

Several hypoglycemic drugs are available to man-
age DM. However, it is not known whether these drugs
contribute to genotoxicity in diabetic patients. These
drugs may have their own genotoxic activities, as well
as enhance (co-mutagens) or weaken (antimutagens) the
effects of exogenous and endogenous genotoxicants, in
particular ROS [12].

This work aimed to systematically review and analyze
the results of previous studies of genotoxic activity and
mutagen-modifying properties of hypoglycemic drugs in
experimental eukaryotic test systems in vitro and in vivo.

MATERIALS AND METHODS

Literature search was conducted to include articles
published from January 1, 1990 to March 31, 2021 us-
ing the MedLine/PubMed scientific literature database
(National Library of Medicine, National Institutes of
Health, Bethesda, Maryland, USA - http://www.ncbi.nlm.
nih.gov/PubMed) and the Russian Science Citation Index
(RSCI) scientific electronic library (http://elibrary.ru).
For certain instances when the understanding of a class
of drugs required a more extensive review of its his-
tory, an additional literature search to include articles
published earlier than 1990 was performed. The results
from this supplementary search are specifically indicated
with the dates in the text.
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Key search terms for studies on the genotoxic ac-
tivities of oral hypoglycemic drugs included the interna-
tional nonproprietary names of drugs classified as group
A10 “Drugs for the treatment of DM” in the anatomical-
therapeutic-chemical drug classification system [13], in
combination with the terms “genotoxicity” or “genotoxic,”
“mutagen” or “mutagenic”, and the corresponding equi-
valents for English-language sources. The review includ-
ed genotoxicological studies performed by chromosomal
aberrations test (CA) and/or the cytokinesis-block micro-
nucleus (MN) cytome assay, evaluation of DNA damage
by the DNA comet assay and the following criteria:

« conducted in vivo on mammals or in vitro in cul-
tures of eukaryotic somatic non-immortalized cell lines;

« performed in compliance with the standard prac-
tices of evaluating genotoxicity, including the presence of
positive and negative controls and appropriate statistical
analyses;

« published in peer-reviewed scientific journals in the
English or Russian languages, with full-text versions of
articles available.

From the full-text articles, information on the test
systems (species of animals, cells used), experimental
design, (doses, routes and frequency of administration,
concentration, exposure time, etc.), and results of the
study were collected.

In the absence of information on the genotoxicologi-
cal properties of a specific drug in the Pubmed and RSCI
databases, an additional search was performed on the
official websites of regulatory agencies, namely Euro-
pean Medicinal Agency (EMA) and the U.S. Food and Drug
Administration (FDA).

RESULTS AND DISCUSSION

The antidiabetic drug classes included in the system-
atic search were insulin and its analogs, insulin secre-
tion stimulants [sulfonylurea derivatives, meglitinides,
analogs of glucagon-like peptides 1 (GLP-1), dipeptidyl
peptidase 4 (DPP-4) inhibitors], insulin sensitivity sen-
sitizers that increase the glucose disposal (biguanides,
thiazolidinediones), and drugs with other mechanisms of
action [alpha-glucosidase inhibitors and sodium glucose
cotransporter type 2 (SGLT2) inhibitors].

Insulin and its analogs

Insulin and its analogs are widely used to treat pa-
tients with T1IDM and T2DM. Insulin is required in pa-
tients with T2DM who fail to achieve glycemic control
after initiating lifestyle changes and oral antidiabetic
drugs, as well as during pregnancy, in the postoperative
period, and in other acute conditions [14].
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Current regulatory requirements do not require geno-
toxicity studies of insulin and its analogs for the regis-
tration of their drug products (DPs). Using our search
strategy, no study available in the literature met the
above-defined inclusion criteria. However, there were
studies that determined the outcomes of interest in im-
mortalized cell lines as presented in Table 1. In particu-
lar, one study aimed to elucidate the possible contribu-
tion of insulin to tumorigenesis and levels of genotoxic
biomarkers of oxidative stress in DM [15]. It was re-
vealed that a minimum human insulin concentration of
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10 nM in human lymphocytes and 0.5-1 nM in human co-
lon adenocarcinoma cells (HT29) resulted in an increase
in the levels of DNA damage and MN in vitro 24 h after
treatment. Normally, the concentration of fasting insulin
in the blood in the morning is an order of magnitude low-
er than these values (0.04 nM). However, in hyperinsu-
linemia and in the postprandial state, the concentrations
could exceed 1 nM, and the plasma insulin concentration
in ZDF rats (Zucker diabetic fatty) reaches 1.67 nM. Data
from specialized clinical trials note an increased risk of
cancer in patients who use insulin or its analogs [17].

Table 1. Studies of the genotoxic and mutagenic properties of insulin and its analogs in vitro and in vivo

International Test Treatment Measured Eff Literature
. " . ect
nonproprietary name system conditions biomarker source
Recombinant human  Cell lines of adenocar- 10 nM for 24 h DNA damage Significant [18]
insulin cinoma (MCF 7) and (DNA comet  effects in both test
BT 474 human breast assay), systems for both
carcinoma MN frequency biomarkers
Cell lines of human colon ~ Within 2 h (HT29 DNA damage Significant dose- [15]
adenocarcinoma (HT29), and Caco 2) (DNA comet dependent effects
human colon cancer or 6 days assay), in all concentra-
(Caco 2), primary cell ~ (HT29; 50% medium  MN frequency tions and test
line of rat colon, human  change daily and systems
lymphocytes addition of fresh
insulin at concentra-
tions of 0.5-1, 1-2,
and 10-20 nm),
30 min of the pri-
mary colon cell line
(10, 100, and
2000 nM) and 24 h
for lymphocytes
(10 and 100 nM)
Insulin lispro According to the manufacturer’s information, insulin lispro does not induce [19]
MN induction in the bone marrow of male and female ICR mice in vivo and the induction
of CA in Chinese hamster ovary (CHO) cells (primary data not presented)
Insulin aspart According to the FDA and EMA, insulin aspart does not exhibit mutagenic activity in tests [20, 21]
for recording CA in human peripheral blood lymphocytes, in a test for recording MN in
mice in vivo (primary data not presented)
Insulin glulisine According to the FDA and EMA, insulin glulisine does not exhibit mutagenic activity [22, 23]
in vitro and in vivo CA recording tests (primary data not presented)
Insulin glargine Cell lines of adenocar- 10 nM for 24 h Level of DNA Significant effect [18]
cinoma (MCF-7) and damage in both test
BT 474 human breast (DNA comet systems for both
carcinoma assay), biomarkers
MN frequency
Insulin detemir According to the FDA and EMA, insulin detemir does not exhibit mutagenic [24, 25]

Insulin degludec

activity in tests for recording CA in human lymphocyte cells in vitro and in bone marrow
cells of CD-1 mice in vivo up to a dose of 7500 nM/kg
(primary data are not presented)

Genotoxicity study data are not presented in the available literature

Note. Here and below in Tables 2-6. MN - micronuclei, CA - chromosomal aberrations. Hereinafter, in the tables, studies are highlighted
in gray, which reveal significant genotoxic activity of the compound in comparison with the negative control.
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Current available data is insufficient to provide basis
for evaluating the genotoxicity of insulin. Whether insulin
or its excipients in the formulations directly causes the
findings reported is unknown. Based on the general un-
derstanding of the mechanisms of induced mutagenesis
and the known effects of insulin, it could be assumed
that genotoxicity due to insulin is improbable.

Oral hypoglycemic drugs

Information on the results of genotoxicity and mu-
tagenicity studies of the main classes of hypoglycemic
drugs is presented in Tables 2-6. Thirty-two drugs were
included in the analysis.

For 6 of these drugs (19 %), no data on their geno-
toxic activities was available in the literature (buformin,
gemigliptin, evogliptin, gosogliptin, dulaglutide, and ip-
ragliflozin). For 10 of these DPs (31 %), only documents
from the websites of regulatory authorities in Europe
and/or the USA were available and did not included
specifications of the experimental design or presenta-
tion of primary data (saxagliptin, alogliptin, exenatide,
liraglutide, lixisenatide, semaglutide, canagliflozin, er-
tugliflozin, repaglinide). For these drugs, it was indicated
that cytogenetic studies were performed in accordance
with current regulatory requirements in vitro and in vivo,
and no data was found indicating genotoxic properties
in them.

Experimental data on genotoxicity or mutagenic
effects were available only for 16 drugs (50 %), per-
formed in either in vivo (for 13 drugs, 41 %) or in vitro
(for 8 drugs, 25 %) systems as summarized in Tables 2-6.
Mutagenic effects in vivo was noted in sulfonylurea
derivatives of chlorpropamide [27], tolbutamide [28]
and gliquidone [29], as well as in a thiazolidinedione
derivative pioglitazone [30, 31]. The genotoxic activ-
ity in vivo was demonstrated by rosiglitazone [32],
and in vitro by metformin [9, 38] and sitagliptin [33].
The absence of genotoxicity or mutagenecity was dem-
onstrated in vivo for glibenclamide, carbutamide, glipi-
zide, gliquidone, gliclazide, glimepiride, dapagliflozin,
and empagliflozin.

Biguanide derivatives. Metformin is the most com-
monly used drug for treatment of prediabetes, gestational
DM, and T2DM in the last 65 years [34]. According to var-
ious estimates, metformin is prescribed to 70 %-85 % of
T2DM patients annually for long-term daily use [35, 36].
The widespread use of metformin has captured the
interest of research groups to assess its genotoxicity
(Table 2).

Analysis of the data given in Table 2 shows that met-
formin administered orally or intraperitoneally at doses
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ranging from 95.4 to 2500 mg/kg does not result in the
induction of CA or MN in laboratory rodents. Rather, met-
formin exhibited antimutagenic properties under these
sets of conditions in streptozotocin-induced DM model in
rats [37]. A similar decrease in MN in bone marrow cells
was observed in the same model after daily 4-week oral
administration of 50 mg/kg metformin combined with
1 mg/kg [41].

The absence of genotoxic activity in vivo in metformin
agrees with results obtained in vitro using cell cultures
of rodents and human lymphocytes at maximum doses
from 50 yM in some cases and up to 114.4 pg/ml in oth-
ers Table 2. However, one study showed that metformin
can induce DNA damage in p53-deficient Chinese ham-
ster ovary CHO-K1 cells was shown using the DNA comet
assay [38]. However, the strength of evidence from this
set of data is low because the authors used unverified
indicators that differ significantly from generally accept-
ed ones [42]. Lastly, it is worth noting that a significant
decrease in the levels of genotoxic biomarkers was ob-
served in several clinical studies in patients with T2DM
while taking metformin [7].

In turn, the antimutagenic effect of metformin, es-
tablished in experiments with streptozotocin DM, is sup-
ported by a number of independent studies which used
chemical mutagens [43]. Metformin after 7-day daily
administration significantly reduced the frequency of
MN in polychromatophilic erythrocytes in the bone mar-
row of male Swiss albino mice 24, 48, or 72 h after in-
traperitoneal administration of the cytostatic antitumor
drug Adriamycin [44]. This observation was seen using
metformin doses of 62.5, 125, and 250 mg/kg and oc-
curred in a dose-dependent manner. Data from in vitro
studies also indicate a protective effect of metformin
against the induction of CA and MN after exposure to
ionizing radiation [45] and DNA damage (% DNA in the
comet tail) induced by 1 mM cumene hydroperoxide in
human lymphocytes [46].

The protective effect of metformin extends to its abi-
lity to reduce the mutagenic effects of other hypoglyce-
mic DPs [47]. The cytogenetic effects of sitagliptin and
vildagliptin [0.04 mg/(kg per day)] alone or with met-
formin (0.2 mg metformin) in pregnant female mice and
their embryos were evaluated. In the absence of met-
formin, both these drugs exerted mutagenic and toxic
effects on pregnant females and embryos. In contrast,
no similar effects were registered when either of these
drugs were combined with metformin.

Furthermore, metformin has antiradical [48], repara-
tive [49], and proapoptotic [50] effects, each of which can
contribute to the observed antimutagenic effects.
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Table 2. Studies of genotoxic and mutagenic properties of biguanide derivatives in vitro and in vivo
International Test system Treatment  Effect biomarker Effect Literature
nonproprietary conditions source
name
Metformin Wistar albino rats, male, con-  Single dose, Frequency No effect in [37]
trol or model of streptozoto- per os in of MN and CA  control rats, significant
cin-induced diabetes mellitus ~ doses of 100, in bone marrow  decrease in MN and
(65 mg/kg intraperitoneally, 500, and cells 24 h after ~ CA levels in rats with
single dose) 2500 mg/kg  administration diabetes mellitus
(in two higher doses)

Wistar albino rats, male, Daily for 4or  Frequency of No effect in control [37]
control or model of strep- 8 weeks, MNand CAin rats, a significant de-
tozotocin-induced diabetes per os in bone cells brain  crease in the MN level

mellitus (65 mg/kg intraperi- doses of 24 h after the in rats with diabetes
toneally, single dose) 100 or last injection mellitus (at a dose
500 mg/kg of 500 mg/kg 4 and
8 weeks after adminis-
tration)
Swiss albino mice, females Once, intra- MN frequency  No effect; cytotoxicity [38]
peritoneally at in bone marrow  at the highest dose
doses of 95.4,  cells 24 h after
190.8, and administration
333.9 mg/kg
Chinese hamster ovary cells, 114.4 and DNA damage Significant increase in [38]
CHO-K1 in vitro 572 pg/ml (DNA comet the level of DNA dam-
assay, alkaline  age in both concentra-
version) and CA  tions (maximum with
frequency 24 h  a lower one); no effect
after treatment  on the level of CA was
found
Culture of human 114.4 pg/ml DNA damage No effect [39]
lymphocytes for 72 h (DNA comet
assay, alkaline
version) and MN
frequency
Culture of human 12.5, 25, and Frequency No effect [40]
lymphocytes 50 yMfor 72h  of MN and CA
Rat NRK kidney 3,12, and DNA damage  Significant reduction in 9]
epithelial cells 48 pM for (DNA comet DNA damage and MN
2and 24 h assay, alkaline  frequency compared to
with/without version) and insulin treatment only
insulin (10 nM) ~ NM frequency
Buformin Genotoxicity study data are not presented in the available literature

This antimutagenic effect translates well when mea-
suring outcomes directly related to cancer. Metformin
has been shown to possess antitumor activity [51].
Lastly, in a number of meta-analyses, patients taking
metformin have been shown to have a lowered risk of
lung, pancreatic, prostate, and breast cancer, as well as
in mortality in cancer patients, compared with patients
receiving insulin or sulfonylurea derivatives [52-55].

Two plausible mechanistic pathways underlying the
benefit of using metformin as a means of cancer pre-
vention have been proposed previously, namely (1) an
indirect pathway associated with its ability to reduce the
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insulin levels by slowing tumor proliferation in patients
with hyperinsulinemia; and (2) a direct action against the
respiratory Complex | of the electron transfer chain in
the mitochondria of preneoplastic and neoplastic cells,
which ultimately reduces the energy consumption of the
target cell [56]. Both pathways of action involve stimu-
lation of adenosine monophosphate-activated protein
kinase (AMPK) by metformin, which inhibits the target
of rapamycin (mTOR) in mammals. AMPK activation de-
creases cell proliferation and can trigger cell cycle ar-
rest and apoptosis [57, 58]. Today, in addition to these
two possibilities of antitumor prophylaxis, it is quite
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appropriate to suggest an antimutagenic pathway, for
example, by suppressing the genotoxicity of ROS arising
during oxidative stress DM.

Sulfonylurea derivatives. It is known that the use
of the first generation of drugs in this group (tolbuta-
mide, chlorpropamide, acetohexamide, and tolazamide)
was associated with an increased risk of thyroid cancer
due to their antithyroid action [59]. Currently, the second
generation of sulfonylureas (glipizide, glimepiride, gli-
clazide, and glycidone) are widely used and can provide
relatively better glycemic control with fewer side effects.
Information on the results of the study of genotoxicity of
sulfonylurea derivatives is presented in Table 3.

Additionally, the results of studies performed in the
1980s investigating the cytogenetic properties of chlor-
propamide and tolbutamide should be mentioned as
reference [27, 28]. In these studies, a dose-dependent
mutagenic effects of these drugs were demonstrated
when used in doses 1-2 orders of magnitude higher
than the therapeutic doses used in humans. These fin-
dings provide a compelling argument in favor of refine-
ment of future studies to measure the genotoxicity of
chlorpropamide and tolbutamide based on contemporary
protocols. Moreover, no studies on the DNA-damaging
effects in vitro or in vivo have been done for any of the
drugs in this group, and the mutagenicity data of the
first-generation sulfonylurea derivatives created several
decades ago [27, 64] requires reassessment [26].

Thiazolidinediones. Currently, pioglitazone is the
only thiazolidinedione available in the market. Rosigli-
tazone was withdrawn because it increased the risk of
myocardial infarction, and troglitazone was withdrawn
due to its hepatotoxicity [65, 66] (Table 4).

In cultures of human lymphocytes, pioglitazone at
concentrations exceeding 108 uM demonstrated concen-
tration-dependent MN induction [68]. In rat lymphocytes
and hepatocytes, a significant dose-dependent increase
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in the level of DNA damage was observed using the DNA
comet assay after daily oral administration of piogli-
tazone for 14 days at doses of 10, 20, and 40 mg/kg [30].

There are separate data indicating a dose-dependent
MN decrease in bone marrow cells of rats after 4 weeks
of daily oral administration of pioglitazone at doses of
20, 40, and 80 mg/kg in the model of streptozotocin-
nicotinamide DM [67].

An unambiguous interpretation of the presented data
is difficult and require further verification in future inde-
pendent studies.

GLP-1 analogs and DPP-4 inhibitors. The avail-
able literature presents no primary results of studies on
the genotoxic activity of glucagon-like peptide analogs.
Information from the websites of regulatory agencies
reports that they have no genotoxic effects (Table 5).
At the same time, there are indications in the literature
on the possible carcinogenic potential of drugs in this
group [69, 70]. From a practical point of view, these
drugs have been in the market for a relatively short pe-
riod of time only, which precludes the assessment of
their long-term effects in humans [71]. Therefore, the
conduct of independent studies on their genotoxic activ-
ity, which enables the prediction of their carcinogenicity
using short-term tests, is of primary importance [6, 72]
and remains an urgent task of contemporary genotoxi-
cology.

Among DPP-4 inhibitors, only sitagliptin and vilda-
gliptin were studied for their genotoxic and mutagenic
activities. No information on these parameters is avail-
able for other drugs in the class, namely, saxagliptin,
alogliptin, gemigliptin, evogliptin, and gosogliptin. Data
on sitagliptin are conflicting. In one study, the drug at
concentrations of 250, 500, and 1000 pg/ml did not af-
fect the frequency of CA and MN after 24 and 48 h of
in vitro treatment of human lymphocytes [77]. How-
ever, in another study, it caused a significant increase

Table 3. Studies of genotoxic and mutagenic properties of sulfonylurea derivatives in vitro and in vivo

International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
Glibenclamide Culture of human 0.6, 10, 100, 240, and  Frequency of MN No effect [60]
lymphocytes 480 puM for 72 h
Chinese hamsters,  Once per os at a dose  SCE in bone mar- No effect [27]
males and females of 10 mg/kg row cells 24 h after
administration

Swiss albino mice,  Twice with an interval Frequency of MN in No effect [28]

male of 24 h at doses

of 4, 8, and 16 mg/kg

DOl https://doi.org/10.17816/ecogen70691

bone marrow cells
6 h after the last
injection
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Table 3 (continued)
International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
Chlorpropamide Chinese hamsters, Therapeutic dose SCE in bone mar- Significant dose- [27]
C57BL/6J mice, 7.1 mg/kg, as well as  row cells 24 hours  dependent effect in
males and females 71, 177.5, 497, and  after administration  both test systems
710 mg/kg, single
dose, per os
Mice NMRI, C3H, Twice after 24 h MN in bone mar- Significant increase [28]
C57BL/6J, Chinese at a dose of row cells 6 h after in MN levels in all
hamsters, Sprague- 355 mg/kg, per os the last injection mice test systems;
Dawley rats, males no effect in rats and
and females hamsters
Tolbutamide Chinese hamsters, Therapeutic dose SCE in bone mar- Significant dose- [27]
C57BL/6J mice, 28.6 mg/kg, as well  row cells 24 h after  dependent effect in
males and females as 286, 1430, and administration both test systems
2002 mg/kg, single
dose, per os
Mice NMRI, Twice after 24 h at a MN in bone mar-  Significant increase in [27]
C3H, C57BL/, dose of 1430 mg/kg, row cells 6 h after  MN levels only in line
Chinese hamsters, per o0s the last injection  C57BL mice; no effect
Sprague-Dawley in other test systems
rats, males and
females
Swiss albino mice,  Twice with an interval Frequency of MN in  Significant (in two [28]
male of 24 h at doses of ~ bone marrow cells  higher doses) dose-
500, 1000, 6 h after the last  dependent increase in
and 2000 mg/kg injection MN level
Carbutamide Chinese hamsters,  Once per os at a dose  SCE in bone mar- No effect [27]
males and females of 715 mg/kg row cells 24 h after
administration
Glipizide Chinese hamsters,  Once per os at a dose  SCE in bone mar- No effect [27]
males and females of 15 mg/kg row cells 24 h after
administration
Gliquidone Chinese hamsters,  Once per os at a dose  SCE in bone mar- No effect [27]
males and females of 85 mg/kg row cells 24 h after
administration
Swiss albino mice, Per os at a dose MN in bone mar-  Significant (p < 0.01) [29]
male of 30 mg/kg once or  row cells 24 h after  dose-dependent in-
daily for 10 the last injection  crease in the level of
or 20 days MN cells was noted
in both cases multiple
administration
Swiss albino mice,  Once per os at doses  CA in bone marrow  Significant (p < 0.01) [29]

male

of 30, 60,
and 120 mg/kg

cells 7 days after
administration
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dose-dependent
increase in the level
of cells with CA was
registered for all
doses
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Table 3 (continued)
International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
Gliclazide Swiss albinoand ~ Once at doses of 1,2,  MN in peripheral No effect [61]
OF1 mice and 3 g/kg blood cells 24 h
after administration
Culture of human 5, 25, 50, and 100 uyM  MN frequency after No effect (without [62]
lymphocytes without/with subse- 72 h of exposure irradiation), significant
quent irradiation concentration-de-
(1.5 Gy after 3 h) pendent decrease in
the level of damage
caused by irradiation,
in all concentrations
Glimepiride Wistar rats, male,  Daily for 4 weeks per  Frequency of MN in Significant dose- [63]

os at doses of 0.175,
17.5, and 175 mg/kg

diabetes model,
intraperitoneal
administration of
streptozotocin
(65 mg/kg) and nico-
tinamide (230 mg/kg)

bone marrow cells  dependent decrease
in the level of cells
with MN compared to

control (p < 0.001)

in the frequency of CA when used at a concentration of
1000 pg/ml after 24 h and at concentrations of 31.25,
62.5, 125, 500, and 1000 pg/ml (but not at a concentration
of 250 pg/ml) after 48 h, and increased the frequency of
MN only at the highest concentration of 1000 pg/ml [33].
In a pilot clinical study, the genotoxic and cytotoxic ef-
fects of sitagliptin in lymphocytes of T2DM patients after
a 6-month course of treatment were demonstrated [82].

With regard to their mutagenic and toxic effects, an
in vivo study showed that sitagliptin and vildagliptin had
harmful effects on pregnant females and their foetus [47].
Reduction of this detrimental effect using metformin
combinations is described above.

Although the existing data are insufficient for the
drawing of precise conclusions, available results indi-
cate the need for a systematic genotoxicological study
of these groups of drugs using experimental and clinical
studies.

SGLT2 inhibitors. Inhibitors of the sodium glucose
cotransporter type 2 (SGLT2 inhibitors) promote the ex-
cretion of glucose in the urine in an insulin-independent
manner. The drugs of this group, dapagliflozin and em-
pagliflozin, did not induce cytogenetic changes in the
cells of the peripheral blood and/or bone marrow of rats
[83, 84]. However, no data on their genotoxic activities
was available (Table 6).

As in the previous drug classes, it should be noted
that studies of the genotoxic activity of the drugs in this
group are insufficient.

Overall, our results demonstrate that current data
on the genotoxicity of hypoglycemic drugs are incom-
plete, fragmentary, uncoordinated, and contradictory.
Almost half of the known hypoglycemic drugs have not
been tested adequately for genotoxicity. This observation
does not differ from that in other drug groups, with more
than half of which have not yet been fully investigated

Table 4. Studies of genotoxic and mutagenic properties of thiazolidinediones in vitro and in vivo

International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
Rosiglitazone Sprague-Dawley Daily per os for DNA damage (DNA Significant dose- [32]

rats, male 14 days at doses of

0.5, 1, and 2 mg/kg
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dependent increase
in the level of DNA
damage in hepato-
cytes compared to
control in all doses
(p <0.001); in lym-

phocytes, the effect is

only in the two higher

doses

comet assay) in pe-
ripheral blood cells
and hepatocytes
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Table 4 (continued)
International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
Pioglitazone Sprague-Dawley Daily for 14 days per DNA damage Significant dose- [30]
rats, male os at doses of 10, 20, (DNA comet assay)  dependent increase
and 40 mg/kg in peripheral blood in the level of DNA
cells and hepato- ~ damage in lympho-
cytes cytes and hepato-
cytes compared with
control (p < 0.001)
Wistar albino rats, Daily for 4 weeks Frequency of CA Significant dose- [67]
male, diabetes per os at doses of 20, and MN in bone dependent decrease
model - intraperito- 40, and 80 mg/kg marrow cells in the level of both
neal streptozotocin 24 h after the last biomarkers in
administration injection comparison with the
(65 mg/kg) and nico- diabetes group, and
tinamide (230 mg/kg) to the control level in
the two higher
doses
Culture of human 100 pM with/without ~ Frequency of CA Significant increase [31]
lymphocytes pretreatment with and SCE after 24 h in the level of both
vitamin B;, cell cul- of exposure biomarkers (p < 0.01);
tures (13.5 pg/ml) pretreatment with
vitamin B, reduces
the genotoxic
effect
Culture of human 4,12, 36, 108, 324,  MN level after 72 h  Significant concen- [68]

lymphocytes and 972 yM

tration-dependent
increase in MN level
at concentrations
above 108 uM

for genotoxicity according to the accepted protocols [64].
The issue underlying these does not seem to be the
lack of genotoxicity analysis of new drugs entering the
market but the outdated evaluation of already available
hypoglycemic drugs. Because the pathogenesis of DM is
accompanied by oxidative and coupled carbonyl stress,
resulting in the formation of genotoxic products [8-10],
the combination of the effects of these endogenous mu-
tagens with the potential genotoxicity of the drug used is
highly undesirable. Therefore, a systematic study on the
genotoxicity of these antidiabetic drugs, in accordance
with current requirements, is needed.

Another potential source of concern is the possible
presence of co-mutagenic effects in hypoglycemic drugs,
which has not been mandatorily tested until now [91].
Our analysis of the literature shows that this type of
study has not been proactively performed in drugs of this
group. Co-mutagens can significantly enhance the geno-
toxic effects. For example, the co-mutagenic properties

DOl https://doi.org/10.17816/ecogen70691

of calcium channel blockers are well known [92, 93].
Further experimental (in appropriate biomodels) or clini-
cal confirmation of the co-mutagenic activity of these
drugs will make these extremely undesirable as anti-
hypertensive drugs in patients with DM. Thus, hypogly-
cemic drugs used in the treatment of patients with DM
should be tested for co-mutagenicity.

Regardless of whether genotoxicity in DM can be
considered a consequence of pathognomonic oxida-
tive stress or manifestations of the effects of the use
of drugs with genotoxic activity, it is essential to note
that most comorbid DM diseases are characterized by
increases in DNA damage in their pathogenesis. This pa-
thology has been shown in chronic degenerative heart
diseases [94] and the development of atherosclerosis
[95, 961, nephropathy [97], neuropathy and retinopathy
[98-100], and cancer [101, 102]. Thus, it is desirable to
consider the use of drugs with combined hypoglycemic
and antimutagenic activity as an option for DM therapy.
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Table 5. Studies of genotoxic and mutagenic properties of GLP-1 analogs and DPP-4 inhibitors in vitro and in vivo

International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
Analogs of GLP-1

Exenatide According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests (73]
(primary data not presented)

Liraglutide According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [74]
(primary data not presented)

Lixisenatide According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [75]
(primary data not presented)

Semaglutide According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [76]
(primary data not presented)

Dulaglutide Genotoxicity study data are not presented in the available literature

Dipeptidyl peptidase 4 (DPP-4) inhibitors
Sitagliptin Pregnant mice and 0.04 mg/(kg - day) CA frequency in  Significant more than [47]

2-fold excess of CA

level in the case of
bone marrow and
3-fold excess in
embryonic cells;

a decrease in the
level of CA when
administered together
with metformin al-
most to the control

per os from the day 3  bone marrow cells
to the day 18 day of of mice on the
pregnancy without or  day 19 of pregnan-
in combination with ¢y and in hepato-
metformin cytes of embryos
(0.2 mg/(kg - day)]

their embryos

values
Culture of human 250, 500, and Frequency of CA, No effect (771
lymphocytes 1000 pg/ml with/with- ~ SCE and MN after
out metabolic activation 24 and 48 h
Culture of human  31.25, 62.5, 125, 250, DNA damage Significant increase in [33]
lymphocytes 500, and 1000 pg/ml  (DNA comet assay), the frequency of CA
frequency of CA,  and SCE at the highest
SCE and MN after  concentration within
24 and 48 h 24 h and at all concen-
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trations (except for
250 pg/ml for CA and
31.25 and
62.5 pg/ml for SCE)
after 48 h compared
with control (p < 0.05),
the frequency of
MN are only in the
highest concentration
(p < 0.05), sitagliptin
increased significantly
the mean intensity of
the comet tail and the

moment of the tail only

at two concentrations

(62.50 and 1000 pg/ml

for intensity, 125 and
1000 pg/ml for tail
moment) and tail

length at all concentra-

tions (except 125 and
500 pg/ml) (p < 0.05)
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Table 5 (continued)
International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
Vildagliptin Human lymphocyte 125, 250, and Frequency of CA, No effect [77]
culture 500 pg/ml with or SCE and MN after
without metabolic 24 and 48 h
activation
Pregnant mice and 0.04 mg/(kg - day) CA frequency in  Significant more than [47]
their embryos per os from the day 3 bone marrow cells ~ 2-fold excess of CA
to the day 18 of of mice on the day ~ level in the case of
pregnancy without/ 19 of pregnancy bone marrow and
in combination with  and in hepatocytes gr_rrglrgoer:(i(c:ecsglllsn-
0 zmet/fc;(rmn:i of embryos a decrease in the
[0.2 mg/(kg - day)] level of CA when
administered together
with metformin
almost to the control
values
Saxagliptin According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [78, 79]
(primary data not presented)
Alogliptin According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [80]
(primary data not presented)
Linagliptin Human peripheral 0.5, 1,25,5,10, CA frequency after No effect [81]
blood mononuclear 25, 50, and 100 mg/l 72 h of exposure
cell culture
Gemigliptin Genotoxicity study data not presented in the available literature
Evogliptin Genotoxicity study data not presented in the available literature
Gosogliptin Genotoxicity study data not presented in the available literature

Moreover, this stresses the need to study the antimuta-
genicity of drugs already used in DM.

Analysis of the literature indicates that among hy-
poglycemic drugs, only metformin has been tested for
antimutagenic activity. The studies performed are frag-
mentary, and this issue requires further in-depth analy-
sis. For this purpose, a proven technique for studying the
antimutagenicity of pharmacological agents can be used

[12, 103, 104]. In addition, a number of drugs that exhibit
antimutagenic effect [105] can potentially be suitable as
complementary treatment interventions for DM.

Among drugs that lower glucose levels, insulin and
insulin secretion stimulants notable for their potential
to increase the risk of cancer. Their mechanisms of
action include signaling of insulin receptors and insu-
lin-like growth factor | (IGF-1R), which enhance cell

Table 6. /n vitro and in vivo studies of the genotoxic and mutagenic properties of sodium glucose cotransporter type 2 (SGLT2)

rats, males and
females

os at doses of 350,
700, or 1050 mg/kg
or for 14 days at

doses of 75, 150, 200,

and 250 mg/kg

DOl https://doi.org/10.17816/ecogen70691

inhibitors
International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name
SGLT2 inhibitors

Dapagliflozin Sprague-Dawley Daily for 1 month per ~ CA in peripheral No effect [83]

rats, males and os at doses of 25, blood cells 24 h
females 100, 150, and after the last injec-
200 mg/kg tion

Sprague-Dawley Daily for 3 days per  Frequency of MN in No effect [83]

bone marrow cells
24 h after the last
injection
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Table 6 (continued)
International Test Treatment Effect Effect Literature
nonproprietary system conditions biomarker source
name

Canagliflozin According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [85]
(primary data not presented)

Empagliflozin Wistar Han rats, Daily for 3 days per os  Frequency of MN in No effect [84]

males and females  at doses of 100, 300,  polychromatophilic
1000, and 2000 mg/kg erythrocytes
Chinese hamster cell 5, 10, and 20 uM with  Frequency of cells No effect [86]
culture or without metabolic with MN
activation

Ertugliflozin According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [87]
(primary data not presented)

Ipragliflozin Genotoxicity study data are not presented in the available literature
Other hypoglycemic drugs

Rapliginide According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [88]
(primary data not presented)

Exenatide According to EMA, does not exhibit genotoxic activity in in vivo and in vitro tests [89]

(primary data not presented)

proliferation and, possibly, carcinogenesis. In contrast,
insulin sensitizers (metformin) have an anticancer effect
by stimulating the regulatory pathway of AMPK, peroxi-
some proliferator activated gamma receptor (PPAR-y),
and the transcription factor, Egr-1 [17]. This raises the
question of whether thiazolidinediones, another class of
insulin sensitizers, could also have antimutagenic activ-
ity, similar to metformin. Finally, available data undoubt-
edly supports the use of metformin as the drug of choice
among hypoglycemic agents.

CONCLUSION

Almost half of the drugs used in the treatment of
patients with DM have not been studied for genotoxic
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