Natural GMOs in the genus *Nicotiana* L.

Galina V. Khafizova¹, Tatiana V. Matveeva²

¹ N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia; ² Saint Petersburg State University, Saint Petersburg, Russia

Soil bacteria “*Agrobacterium*” are able to transfer fragments of their plasmids, so-called T-DNA, into plants. T-DNA integrated into plant’s genome is called cellular T-DNA (cT-DNA) [1]. Plants transformed in nature are considered natural genetically modified organisms (nGMOs). For the first time, nGMOs were described within the genus *Nicotiana*. To date, more than 50 nGM species are known [2, 3], among which nGMO in the genus *Nicotiana* are the most well studied. Within this genus 3 subgenera are distinguished, those are *Tabacum*, *Petunioides*, and *Rustica*. CT-DNAs in natural genetically modified representatives of the subgenus *Tabacum* are studied in detail [4, 5]. We know how many cT-DNA those species carry as well as the composition of the cT-DNA, which allows us to propose scenarios for the acquisition of cT-DNA by these species during their evolution. Species *N. noctiflora* and *N. glauca* belong to the subgenus *Petunioides* and they are not so well studied. We sequenced and assembled the genomes of *N. noctiflora* and *N. glauca*, to analyze their cT-DNAs. In the *N. glauca* genome we confirmed the presence of one cT-DNA, gT, discovered in 1983, and showed no other inserts. In the genome of *N. noctiflora* 2 cT-DNAs of different composition were found, NnT-DNA1 and NnT-DNA2. The data suggest a single agrortransformation act in the evolution of the species *N. glauca*, while the species *N. noctiflora* was transformed several times. Further study of cT-DNA in *Nicotiana* representatives belonging to different evolutionary branches of the genus will help to clarify the evolutionary history of the genus *Nicotiana*. In addition, the identification of changes that have occurred in the cT-DNA since its entry into the plant genome will help to elucidate the processes that occur with transgenes in plant genomes over long time intervals.

The work was supported by the Russian Science Foundation (21-14-00050) and was conducted using the equipment of the Research Center of St. Petersburg State University “BioBank”. The authors are grateful to professor Leon Otten, as well as Pavel Dobrynin, Dmitry Polev, Nikolai Ivanov, and Nicholas Sierro.

REFERENCES

AUTHORS’ INFO

Galina V. Khafizova, Junior Researcher, Oil and Fibre Crops Department, N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia. SPIN: 7310-5803; e-mail: galina.khafizova@gmail.com

Tatiana V. Matveeva, Doctor of Science, Professor, Genetics and Biotechnology Department. Saint Petersburg State University, Saint Petersburg, Russia. SPIN: 3877-6598; e-mail: radishlet@gmail.com