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= The review presents the results of experimental and clinical studies, according to which the absence of circadian
melatonin production in pregnant women associated with the pathologies they have (obesity, diabetes mellitus, meta-
bolic syndrome, pregnancy complicated by gestosis and chronic placental insufficiency, etc.) disrupts the genetic pro-
cess of organizing the rhythmic activity of genes of the suprachiasmatic nuclei of the hypothalamus and melatonin
production in the pineal gland of the fetus, leading to dysregulation of metabolic processes in the child’s body after
birth and programming pathology in following life. The significance of this factor in the pathophysiological mecha-
nisms of catch-up growth during the first months of life determines a new approach to assessing the risk of obesity and
necessitates learning the consequences of impaired development of the brain and other functional systems in fetuses
that are born earlier than the 26" week of pregnancy and are thereby deprived of maternal melatonin, a key signal-
ing molecule that directs and coordinates the genetic development process, during the most critical period of early
ontogenesis.
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= B o630pe mpencTaB/eHbl pe3yIbTaThl SKCIICPVMEHTAJbHBIX M KIMHUYECKUX MUCCICHOBAHMUI, IOKa3aBIIMX, YTO
OTCYTCTBMeE LMPKAAMaHHON NPOAYKIMY MeTaTOHMHA y 6epeMeHHOII, CBA3aHHOE C VIMEIOIIeNiCs Y Hee IaTOoryelt (0xm-
peHue, caxapHbIil fuabeT, MeTabOMMYEeCKIIT CUHPOM, TeCTO3, XpPOHUYeCcKas IIaljeHTapHas HeJOCTaTOYHOCTDb U T. IL.),
He TOJIbKO TIPVMBOIMUT K 3aJiepXKKe CTAaHOBTIEHMA PUTMUYECKON aKTMBHOCTU CIIeU(PUIECKUX TeHOB IIOAA, HO U JISKUT
B OCHOBE JEperynaluy MeTabommdeckux IpoleccoB B OpraHusMe pebeHKa U IPOrpaMMMPOBAHMUsA IATONOIMU B IO-
CIeAyIolye TOMIBI )KM3HN. 3HaueHMe 3TOro (paKTopa B MaTopM3MONOTMYeCKMX MeXaHM3MaX CKayka poCTa yKe B IlepBble
MeCsILBl )KU3HM OIIpefiefiieT HOBBI IIOAXOJ K OLieHKe PIMCKa OXXMPEHMA U 06yCIOBNIMBaeT HeOOXOAVMOCTb U3YUEHUS
HOCTIeACTBUII HAPYLIEHNs PasBUTH MO3Ta I APYTUX (QYHKIMOHAIBHBIX CUCTEM Y IIOLOB, POAMBIINXCS paHee 26-11 He-
menu 6epeMeHHOCTH ¥ BCIECTBIE 9TOTO JIMIIEHHBIX MATEPMHCKOTO MENAaTOHMHA — K/TI0YeBOIl CUTHA/IBHOI MOJIEKYIIBL,
HaIIpaBJIAIOLIEN M KOOPAVHUPYIOLEN TeHeTUYEeCKNIA POLeCC Pa3BUTHA B CaMbIil KpUTUYECKII IIEPUOJ, PAHHETO OHTO-
reHesa.
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Root cause analysis of increasing obesity in
children has shown a link with excessive weight
gain in the first months of life. This phenomenon
is called an “early growth spurt” [1-4]. This excess
weight gain was observed in children whose
intrauterine development took place in unfavorable
conditions, that is, in mothers with obesity,
diabetes, metabolic syndrome, chronic diseases of
three or more functional systems (cardiovascular
system, gastrointestinal tract, immune system, etc.),
as well as in the case of pregnancy complications
with chronic placental insufficiency, preeclampsia,
and gestational diabetes mellitus [5-7]. While
body weight at birth was significantly higher than
needed for gestational age in some children, body
weight in others lagged behind the growth curve,
showing an asymmetric pattern in intrauterine
development [8-10]. However, all children showed
the appearance of visceral obesity in the first
months of life [11-13], and in subsequent years,
they developed type 2 diabetes mellitus, metabolic
syndrome, and pathology of the cardiovascular and
nervous systems [14-16].

Based on the study of various mechanisms that
determine the programming of this pathology and its
adverse consequences [17-20], several hypotheses
have been proposed to explain the etiopathogenesis
of growth spurt and its impact on subsequent dev
Based on the study of various mechanisms that
determine the programming of this pathology
and its adverse consequences [17-20], several
hypotheses have been proposed to explain the
etiopathogenesis of growth spurt and its impact
on subsequent development. Thus, according
to the hypothesis of “economical phenotype,”
in conditions of insufficient nutrient intake,
the adaptive response of the fetus is aimed at
optimizing the growth and development of organs
such as the heart and brain, to the detriment of
visceral organs (liver, pancreas, etc.), which during
the child’s adaptation to new environmental
conditions leads to morphofunctional changes in
the latter, contributes to the violation of metabolic
processes and excessive accumulation of adipose
tissue [21, 22]. Other hypotheses concern the
role of diabetes mellitus, excessive nutrition
and a high-fat diet of a pregnant woman in the
development of hyperglycemia, hyperinsulinemia,
hyperleptinemia, and increased cortisol levels
in the fetus with subsequent modulation of the

metabolic response of hypothalamus neurons
[23-26]. It is believed that the growth spurt is
associated with excessive protein consumption
(early protein hypothesis) in the early postnatal
period. A high level of protein in the infant’s
diet leads to an increase in the concentration of
insulinogenic amino acids in the blood plasma,
which stimulate the production of insulin-like
growth factor and insulin that leads to obesity.
A lack of breastfeeding and increased protein
levels during artificial feeding are considered as
a high risk of developing obesity [8].

Thus, it is in the perinatal period that a violation
of the genetic program for the development of
hormonal and metabolic regulatory mechanisms
in a child’s functional systems determines the
development of obesity in early childhood. The
main mechanisms for the formation of this
pathology are oxidative stress, epigenetic regulation,
glucocorticoid effect, as well as the participation
of neuroactive steroids, somatolactogens, and
related peptides, namely, insulin-like growth
factor (IGF-1) and oxytocin [27-29]. In this case,
each proposed mechanism presents the role of the
hormone melatonin, the absence or lack of which
contributes to the progression of obesity. Thus,
melatonin, being an oxygen free radical scavenger,
the most powerful antioxidant, and activator of
other antioxidants (catalase, superoxide dismutase,
glutathione peroxidase), prevents the development
of oxidative stress and mitochondrial dysfunction
in the mother-placenta-fetus system [30-32].
It suppresses the activity of neuronal and inducible
nitric oxide synthases and the generation of highly
toxic peroxynitrite, but it induces the activity
of endothelial synthase, thereby contributing
to the improvement of utero-placental blood
circulation [33]. Due to the presence of G-protein-
linked receptors in fetal tissues, melatonin has
a direct modulating effect on cortisol production
in the adrenal glands and on lipolysis in brown
adipose tissue [34]. A pathophysiological link
between melatonin and the functioning of the
hypothalamic-pituitary-adrenal system has been
established [35]. It is known that severe oxidative
stress can significantly change the expression of
genes involved in controlling the body’s energy
homeostasis [36].

Studies confirm the influence of homeosta-
sis disorders in the mother and placenta on the
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development of epigenetic processes (DNA meth-
ylation, histone modification, etc.) in the perinatal
period. Thus, the features of expression of genes
involved in the control of differentiation and func-
tioning of adipose tissue cells, liver, hypothalamic
neuropeptides, and glucocorticoid receptors in the
genesis of a growth spurt were established [37-41].
Epigenetic modifications in the structure of his-
tone (H3K4), an insulin-like growth factor in the
liver, lead to an increase in the level of IGF-1 in the
blood of a growth-retarded fetus, which determines
its growth spurt in the first months of life [42, 43].
However, it is melatonin that plays a key role in
protecting against epigenetic changes in a gene
expression, including clock-controlled genes that
are involved in the regulation of circadian rhythms
of metabolic processes [44, 45]. Thus, with a low
melatonin production in a single mother-placenta-
fetus system, it becomes possible to adversely af-
fect one or another factor during critical periods of
fetal development, which leads to “programming”
of metabolic disorders.

Melatonin is synthesized in the epiphysis,
the endocrine function of which depends on
the light mode. Light information from the
retinal ganglion cells passes through the retino-
hypothalamic tract to the superchiasmatic nuclei
of the hypothalamus, which are circadian rhythm
generators or biological clocks. From there, the
signals go to the upper cervical ganglia and then
along the sympathetic noradrenergic pathways
reach the epiphysis where melatonin is synthesized.
Light inhibits the production and secretion of
melatonin; therefore, maximum levels of melatonin
in the human blood are observed at night and
minimum levels in the daytime. The daily rhythm
of melatonin production serves as a marker of
normal circadian regulation of endogenous
biorhythms and their synchronization [46].
Extrapineal melatonin is found in all organs and
cells [47]. Melatonin is synthesized from the amino
acid tryptophan, which is converted to serotonin
by hydroxylation (the enzyme tryptophan
hydroxylase) and decarboxylation (the enzyme
5-oxy-tryptophanecarboxylase). With the help of
the enzymes N-acetyltransferase and oxyindolo-
methyltransferase, melatonin is formed from
serotonin. From pinealocytes of the epiphysis,
melatonin is released into the blood and spinal
fluid, and the melatonin secreted in other cells

of the body enters the blood in small quantities,
exerting paracrine and autocrine influence at the
sites of its synthesis [48]. Melatonin performs
regulatory functions in all tissues and cells through
binding to receptors. Two types of membrane
receptors (MT1 and MT2) and their chromosomal
localization (chromosomes 4q35 and 11q21-22)
as well as nuclear receptors (RORa) have been
identified in humans [49].

Melatonin is involved in the processes of the
morphofunctional development of the placenta
and the preservation of its neuroimmunoendocrine
function, aimed at the formation of vital functional
systems of the fetus. During a physiologically
occurring pregnancy, circadian fluctuations of the
body mass increase 5-10 times, and the content
of the hormone in the blood serum reaches its
maximum values before delivery [50, 51]. It has
been established that maternal body mass starts the
genetic process of morphological and functional
development of the fetal epiphysis and circadian
functioning of the superchiasmatic nuclei.
Due to this, from the 26" week of intrauterine
development, it is at night that maternal epiphyseal
melatonin includes circadian rhythms of Clock
genes involved in the regulation of metabolic
processes and the vital activity of fetal functional
systems [52]. This ensures postnatal adaptation to
new environmental conditions and integration of
endogenous biorhythms of the child’s functional
systems into the circadian system that is regulated
by its own superchiasmatic nuclei depending on
changes in light [53]. The absence of such influence
of the maternal melatonin in children born before
the 26" week obviously determines the high
incidence and subsequent disability.

It should be emphasized that in all the above
diseases and pregnancy complications of women
whose children are predisposed to obesity, the
level of melatonin in the blood does not increase
at night [30, 54-57]. Experimental studies have
shown that in this situation, the offspring also
has low production of epiphyseal melatonin,
its circadian rhythm is absent not only at birth,
but also in later life, which determines the early
implementation of metabolic programming
[58-60]. The formation of the circadian rhythm
of epiphyseal melatonin production normally
continues at an accelerated pace in the first days
and weeks of life, and maternal influence on this
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process is carried out through breastfeeding. It
is known that breast milk contains more than
60 biologically active factors, and the concentration
of somatotropic hormone, prolactin, IGF-1,
insulin, leptin, relaxin, and epidermal growth
factor in breast milk is higher than in the mother’s
peripheral blood [61-64]. Healthy mothers have
high levels of tryptophan and melatonin in breast
milk, especially in colostrum, which are sensitive
to circadian changes [65, 66]. That is why a clear
daily rhythm of melatonin production is formed
against the background of breastfeeding by the
end of the second month of life that is facilitated
by the observance of the feeding regime [50].

Melatonin, being a key regulator of carbohy-
drate and fat metabolism, controls adipocyte dif-
ferentiation, lipogenesis, lipolysis, capture of fatty
acids and glucose, as well as the influence of insulin
and energy reserves, simultaneously performs cir-
cadian organization of metabolism in muscles, adi-
pose tissue, liver, and pancreas [67]. By binding to
specific nuclear receptors (RORa/RZR), melatonin
controls cell growth and cell differentiation [68],
which opens up wide opportunities for its partici-
pation in epigenetic modification of DNA and his-
tones, which is directly related to the development
of various pathologies.

The inhibition in the genetic process of
formation of the circadian rhythm of melatonin
production leads to desynchronization of metabolic
processes, violation of energy metabolism and
excessive weight gain [63, 69, 70]. In addition,
mothers with low melatonin production tend
to have reduced lactation, and most of them are
forced to finish feeding the milk formula, in which
the protein level exceeds its content in the mother’s
milk, which contributes to an even greater growth
spurt. Taking into account the pathophysiological
mechanism of programming and development
of obesity, the children of these mothers should
use mixtures with a protein level close to that in
women’s milk, enriched with alpha-lactalbumin
with a high content of tryptophan and, in addition,
including oligosaccharides. The latter significantly
optimize the formation of intestinal microflora,
which is actively involved in the synthesis and
metabolism of melatonin [71, 72]. Over the last
years, the attention of researchers has been drawn
to the experimental study of the effect of melatonin
use during pregnancy and postnatal ontogenesis in

order to reprogram the development of pathologies
[73-75], which will allow determining objective
risk criteria and developing methods for preventing
pathological processes.

Conclusion

The absence of circadian melatonin production
of a pregnant woman, associated with her existing
pathology (obesity, diabetes mellitus, metabolic
syndrome, gestosis, chronic placental insufficiency,
etc.), not only leads to inhibition in the formation
of rhythmic activity of specific fetal genes, but
also underlies the deregulation of metabolic
processes in the child’s body and programming
of pathology in the subsequent years of life. The
significance of this factor in the pathophysiological
mechanisms of growth spurt in the first months
of life determines a new approach to assessing
the risk of obesity and causes the need to study
the consequences of impaired brain development
and other functional systems in fetuses born
earlier than the 26 week of pregnancy and thus
deprived of maternal melatonin-a key signaling
molecule that directs and coordinates the genetic
development process during the most critical
period of early ontogenesis.
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