REVIEW Vol. 70 (3) 2021 Journal of Obstetrics and Women's Diseases 121

DOI: https://doi.org/10.17816/JOWD57192 .

Role of molecular signaling pathways Ghack o
in the pathogenesis of adenomyosis

© Maria A. Shalina', Maria |. Yarmolinskaya' 2, Elena A. Netreba', Alexandra K. Beganova®

! The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.0. Ott, Saint Petersburg, Russia;
2 North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia;
3 Saint Petersburg State University, Saint Petersburg, Russia

The prevalence of genital endometriosis and adenomyosis, in particular, is tending to increase. The lack of a complete
understanding of the pathogenetic mechanisms and multifactorial causes of adenomyosis, the low effectiveness of existing
drug therapy, and the importance of preserving reproductive function make it necessary to further study the pathogenesis of
the disease, search for new non-invasive highly informative diagnostic methods and develop a new strategy for pathogeni-
cally based drug therapy. The review presents current data on the role of signaling pathways in the pathogenesis of the deve-
lopment of adenomyosis based on domestic and foreign literature sources retrieved from the electronic databases PubMed,
CyberLeninka, and Google Scholar in the period from 1999 to 2020. Considerable emphasis is placed on the discussion of the
research results in recent years. Based on the analysis, the role of transforming growth factor 3 (TGFp3), vascular endothelial
growth factor (VEGF), dual-specificity protein phosphatase (PTEN), Notch receptors, and eukaryotic translation initiation fac-
tors (elFs) in the signaling of adenomyosis is presented. Further advanced study of signaling pathways in the pathogenesis of
adenomyosis will allow developing highly specific and highly sensitive markers for non-invasive diagnostics, as well as new
directions for drug treatment of the disease.

Keywords: adenomyosis; genital endometriosis; adenomyosis signaling pathways; Notch1/Numb/Snail signaling; Snail;
Slug; VEGF; PTEN; E,/Slug/VEGF; TGF-f31/Smad3.

To cite this article:
Shalina MA, Yarmolinskaya MI, Netreba EA, Beganova AK. Role of molecular signaling pathways in the pathogenesis of adenomyosis. Journal of Obstetrics
and Women'’s Diseases. 2021;70(3):121-134. DOI: https://doi.org/10.17816/J0WD57192

Received: 30.12.2020 Accepted: 11.03.2021 Published: 30.06.2021
V-2
ECOeVECTOR The article can be used under the CC BY 4.0 license

© Eco-Vector, 2021


https://crossmark.crossref.org/dialog/?doi=10.17816/JOWD57192&domain=PDF&date_stamp=2021-08-16

122

0B30P Tom 70, N? 3, 2021 HypHaN aryLepCcTBa 1 reHCKMX bonesHel

YK 618.145-007.415
DOI: https://doi.org/10.17816/JOWD57192

Ponb MoneKynsapHbIX CUrHanbHbIX NyTeW
B MaToreHese af,eHOMMO3a

© M.A. WanunHa', M.W. Apmonunckaa® 2, E.A. Hetpe6a', A.K. Beranosa®

! HayuHo-MCCrIelOBaTeNLCKMIA MHCTUTYT aKyLLepCTBa, rMHeKoorum u penpopyktonorum uM. [1.0. OtTa, Cankt-Tetep6ypr, Poccus;
2 CeBepo-3anafHbli rocyAapCTBEHHbIA MEAULMHCKMIA yHuBepcuTeT uM. U.W. Meunmkosa, CankT-Metepbypr, Poccus;
3 CankT-TeTepbyprckuit rocynapcTeHHblit yHusepeutet, CaHkT-Metepbypr, Poccus

HabniogaeTcA TeHOEHUMA K YBEIMYEHWIO pacnpOCTPAHEHHOCTU U MeHUTaNbHOM0 3HAOMETPMO3a, U afeHoMuosa. OTcyT-
CTBME [OCTATOMHOr0 MOHUMaHWA NaTOreHeTUYECKUX MEXaHW3MOB U MHOrO(aKTOpHbIX MPUYMH PasBUTMA afeHOMUO3a,
HU3KaA IPDEKTUBHOCTb MEUKAMEHTO3HOM TEpanuK, BarHOCTb COXPaHEHUA PenpomyKTMBHOW QYHKLMM 06yCnoBNMBaIOT
HeobXoAMMOCTb AaNbHEWLIEr0 M3yYeHWUs NaToreHesa 3aboneBaHWA, NOMCKA HOBbLIX HEMHBA3UBHBLIX BbICOKOMHOPMATMB-
HbIX METOAO0B OMarHOCTUKM M pa3paboTKM HOBOW CTpaTerMu NaTtoreHeTUYecky 060CHOBAHHOM MeOMKaMEHTO3HOW Tepa-
nuu. B o63ope npefcTaBneHbl COBPEMEHHbIE [aHHble O PONIM CUTHAMbHBIX MyTeW B MaToreHese pasBMTUA afieHOMMO3a
Ha OCHOBAHWM OTEYECTBEHHBIX W 3apyberHbIX MTEPaTYPHBIX MCTOYHUKOB, PasMeLLieHHbIX B 3IEKTPOHHBIX 6a3ax AaHHbIX
PubMed, CyberLeninka, Google Scholar B nepvoa ¢ 1999 no 2020 r. CaenaH aKUeHT Ha 06Cy*KOeHUM pe3yNnbTaToB UCCNeao-
BaHWM nocneaHuMx net. Ha ocHoBaHWM aHanv3a npefcTaBneHa ponb TpaHchopmupyiolero ¢paxTopa pocta 3 (TGFB), dakTo-
pa pocta sHfotenus cocynos (VEGF), docdatasel ¢ aBoiHon cybetpatHon cneumdmyHoctbio (PTEN), TpaHcMeMbpaHHbIX
peuenTopHbix 6enkos Notch, aykapuoTuyeckux ¢paKkTopoB MHMLMALMKM TpaHenaumK (elFs) B cUrHanbHbIX NyTAX pasBUTMA
afieHoMno3a. [anbHenwwee yrnybneHHoe U3yyeHne CUrHanbHbIX NyTen B naToreHese afeHOMMO3a No3BOAMT paspaboTaTb
BbICOKOCTIELMdUYECKME M BICOKOUYBCTBUTENbHBIE MApKEPbl HEMHBA3WBHOM AMArHOCTUKM M HOBbIE HaNpaB/ieHWA MeuKa-
MEHTO3HOr0 JieYeHMA 3aboneBaHus.
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Adenomyosis is one of the common gynecological
diseases. The frequent combination of external genital
endometriosis (EGE) and adenomyosis indicates the
commonality of their pathological processes [1]. However,
various theories of occurrence and the discovery of new
pathogenetic mechanisms have made adenomyosis
a separate nosological form of endometrioid disease [2-4].
Adenomyosis is characterized by invasion of functional
or ectopic endometrial and stromal glands into the
myometrium with or without local hyperplasia [5]. Based
on the current understanding of wound healing, a new
hypothesis was proposed to explain the pathogenesis of
adenomyosis, i.e., endometrial-myometrial rupture caused
by iatrogenic trauma. According to this hypothesis, not only
hypoxia at the injury site is important in the development
of adenomyosis but also the epithelial-mesenchymal
transition (EMT), improved survival, and proliferation
of endometrial cells that are scattered and displaced
by iatrogenic procedures [6]. Although adenomyosis
is benign, it has several properties similar to those of
malignant tumors, including adhesion, invasion, and
implantation [7].

EMT is crucial in the pathogenesis of various
proliferative diseases, such as adenomyosis, EGE, uterine
fibroids, and oncological processes, particularly the
invasion and metastasis of breast cancer [8, 9]. EMT is
a fundamental component of embryonic cell development,
physiological processes of stem cell maturation, and
wound healing [10, 11]. In the EMT process, the apical-
basal polarity of epithelial cells and intercellular contacts
disappear, the expression of epithelial markers is
significantly reduced, and the expression of mesenchymal
markers increases; as a result, the cells transition into
mobile mesenchymal ones [5, 10]. By acquiring the ability
to migrate and invade, cells become resistant to apoptosis
and increased the secretion of degradation enzymes that
lyse the surrounding extracellular matrix [12]. During
embryonic development, these characteristic changes are
called “EMT type 1,” which nearly mesenchymal cellular
phenotype and changes are short-term. Changes during
inflammation and fibrosis are called “EMT type 2," are
long term, and often lead to pathological consequences.
As regards oncogenesis, “EMT type 3" is distinguished as
an aggressive, uncontrolled phenomenon characterized
by abnormal expression of oncogenes and absence of
tumor suppressor genes, which leads to an increase
in the invasive and migratory properties of cells and
further EMT activation [13]. After the loss of intercellular
contacts, the mesenchymal tumor cell can penetrate the
intercellular matrix and basement membrane into the blood
capillaries and metastasize to other organs and tissues.
Many enzymes are involved in the EMT process, including
matrix metalloproteinases (MMP-1, MMP-2, and MMP-9),
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which activate heterotopic invasion in endometriosis and
adenomyosis [12, 14] and the penetration of tumor cells
into the bloodstream in the case of oncological diseases
[13, 15]. More than 20 types of MMPs are known and
play key roles in various stages of collagen and elastin
degradation [16].

An increase in the production of MMP-2 and MMP-9
in endometriosis leads to an increase in the ability of
endometrioid cells to invade and is an important element in
disease pathogenesis [16].

The molecular process in EMT is plastic and can undergo
regression to reverse back to the epithelial phenotype.
The reverse process is called the mesenchymal—epithelial
transition [16].

Among the molecular factors involved in EMT, inducers,
regulators, and effectors can conditionally be distinguished
[15, 17, 18]. Inducers are growth factors and receptors that
initially signal mesenchymal changes, namely, hepatocyte
growth factor (HGF) and fibroblast growth factor (FGF),
transforming growth factor-B (TGFB), and platelet-
derived growth factor (PDGF), supporting their constant
proliferation and cell differentiation. Growth factors induce
EMT with subsequent invasion and migration. Regulators
are represented by transcription factors, and effectors are
responsible for the final shape of the cell and its ability to
invade [17].

Adhesion contacts between cells are homodimeric
intercellular junctions linked by classical E- and
N-cadherins. EMT is mainly triggered by a decrease in
the expression level of the epithelial marker E-cadherin
[19, 20]. The process, called cadherin switch, involves
a progressive loss of E-cadherin expression and its
replacement by mesenchymal-type cadherins such as
N-cadherin and cadherin-11 [20]. The decrease in the
level of E-cadherin is directly or indirectly affected by
several transcription factors, consisting of three families,
namely, Snail, ZEB, and Twist. N-cadherin, as a member
of the superfamily of integral membrane glycoproteins
that regulate cell adhesion and motility, plays an important
role in EMT. The transition from the expression of
E-cadherin to the expression of N-cadherin is often noted
in many aggressive cancers [21]. N-cadherin stimulates the
activation of the mesenchymal transcription factors Snail
and Slug, causing the modulation of the fibroblast growth
factor receptor (FGFR), leading to increased invasion,
proliferation, and metastasis of tumor cells.

EMT induction depends on numerous signaling pathways,
such as Notch1/Numb/Snail [5], TGFB/Smad [8, 9, 22],
elF3 [9], and E,/Slug/vascular endothelial growth factor
(VEGF) [23]. These cascades regulate the inflammatory
response, fibrosis, angiogenesis, and proliferative processes
in diseases and, thus, may be promising pharmacodynamic
treatment targets.
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Mesenchymal transcription factors Snail
and Slug

The Snail transcription factor, first discovered in
Drosophila as a Zinc finger transcription factor, is a key
regulator of EMT [43]. Snail and Slug are associated with
tumor cell migration, invasion, and metastasis. Snail is
involved in the regulation of EMT during the development
of various oncological processes, including breast and
ovarian cancer [14, 25]. Unlike Snail, Slug is also involved
in EMT-associated wound healing, belongs to the Zinc finger
family of transcription factors, and plays an important role
in EMT during embryonic development and metastasis
of various cancers by inhibiting E-cadherin [26]. Another
mechanism of tumor development is the activation of
inflammatory mediators, which in chronic inflammation
increases the expression of Snail and ZEB proteins, which
in turn contributes to the development of fibrosis, “tumor”
EMT, and subsequent metastasis [24].

In adenomyosis, the expressions of Snail and Slug in the
endometrium are increased (p < 0.01) both in the proliferative
and secretory phases of the menstrual cycle, compared with
indicators in the endometrium of healthy women [5, 9].

Slug and Snail are involved in the EMT of cancer cells;
in particular, their high expression was revealed during the
development of mammary tumors [27, 28]. In addition, the
susceptibility to tumor treatment depends on the activities of
Snail and Slug. Thus, Haslehurst et al. revealed that in ovarian
carcinoma cells, high expressions of Snail and Slug caused
resistance to cisplatin [29]. Inhibition of their expression led
to a significant decrease in tumor activity and metastatic be-
havior of squamous cell carcinoma cells, which can be used in
developing methods for treating oncological processes [30].

TGFP and other transcription factors of the EMT

TGF is a cytokine protein that controls proliferation and
cell differentiation in cells. TGFf3 is a well-studied and potent
EMT inducer [9, 15, 22]. It has three isoforms, namely, TGF@1,
TGFP2, and TGFB3. The TGFB1 family represents a part of the
superfamily of proteins known as the TGF superfamily, which
includes inhibins, activins, anti-Miillerian hormone, bone
morphogenetic protein, and decapentaplegic protein factor.
In normal epithelial cells and early stages of oncogenesis,
TGFpB can be induced by external signals and acts as an
antiproliferative factor. In adenomyosis and EGE, platelet
TGF(B1 activates the TGF[31/Smad3 signaling pathway, which
triggers EMT, smooth muscle metaplasia, transformation of
fibroblast to myofibroblast, and development of fibrosis [9].
In the analysis of the expression levels of TGFB1 and
p-Smad3 proteins in stromal cells, these parameters were
significantly increased in the endometrium with adenomyosis
compared with the endometrium of healthy women [31]. Cai
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et al. [9] revealed a significant increase in the expression
of TGFB1 in the endometrium of women with adenomyosis
compared with its expression level in healthy women.

For other hyperplastic processes, increased levels of
Smad3 and Co-Smad and numbers of TGFB-R1 and TGF3-R2
receptors were also detected in uterine fibroids cells, which
partly determine the tendency toward aggressive growth [32].
TGFp isoforms are released into the extracellular matrix of
myoma, after which they are activated by tissue proteases.
Thus, TGFP3 becomes an active ligand, binds to one of its
receptors (TGFB-R1, TGFB-R2, or TGFB-R3), and triggers
the EMT cascade mechanism. TGF31 and TGF(32 are equally
found in the cells of both myoma and intact myometrium.
Lee and Nowak revealed that the concentration of TGF(33
mRNA is five times higher in leiomyoma cells than in healthy
myometrium cells [33]. Moreover, a study demonstrated the
refractoriness of myoma to the potential antiproliferative
effects of TGFB1 and TGFB3 and concluded that the TGF3
signaling pathways in leiomyoma cells are disrupted.
In addition, TGFB3 induces the secretion of fibronectin
by tumor cells and thus enhances fibrotic processes in
myomatous nodules. The profibrotic effect of TGFB33 was
confirmed by an increase in the expression of type | and Il
collagens in myoma cells as a result of the action of this
growth factor [34]. The validity of considering TGFP3 as
a potential subject for pharmacological action is confirmed
in a series of experimental works. Lee and Nowak [32]
showed that the use of antibodies that neutralize TGF[ led to
a decrease in the amount of type | and Il collagen mRNA in
myoma cells, which reduced their potential for tumor growth
and fibrosis. Another study noted that in vivo blockade
of TGFP signal transmission by the type | ALKS5/TGFBR
kinase inhibitor (SB525334) in Eker rats is associated with
a decrease in the size and number of myomatous nodules.
However, SB-525334 appeared to be a mitogenic and
antiapoptotic factor for renal epithelial cells and enhanced
the growth of renal cell carcinoma in rats [35].

TGFp-dependent signal transmission is a prototype EMT
inducer in various oncological diseases [36]. Subsequently,
cancer cells can increase the amount of secreted TGF[3,
affecting the surrounding cells. Thus, the induction of
mesenchymal changes in cells triggers “tumor” EMT. As the
tumor grows, angiogenic mediators are released, including
VEGF, IGF, TGFP, HGF, and FGF [37]. Tumor-induced
inflammation leads to the emergence of immune cells
that secrete cytokines (such as tumor necrosis factor-a,
interferon-y, interleukin-6, and interleukin-1f3).

Transcription factor VEGF

VEGF is considered a signaling protein, a mitogen, which
is the main promoter of angiogenesis and vasculogenesis
in pathological and physiological conditions and a highly
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specific mitogen for endothelial cells [38]. Several different
members of this family are known, with VEGFA as the most
important member. Placental growth factors, which are the
proteins VEGFB, VEGFC, and VEGFD, discovered later also
belong to the VEGF family. VEGF induces angiogenesis,
protects tumor and endothelial cells from apoptosis, and
plays an important role in the neovascularization of the
resulting endometrioid implants [39].

VEGF has three types of receptors, namely, VEGFR1,
VEGFR2, and VEGFR3. In women with adenomyosis, the
levels of VEGF mRNA and the corresponding protein in the
eutopic endometrium are increased, which confirms the
assumption about the key role of this growth factor in the
pathological angiogenesis of adenomyosis [40]. In patients
with adenomyosis, an inadequate increase in the VEGF
level concerning its inhibitor was detected. An imbalance
between an increase in the activity of pro-angiogenic and
anti-angiogenic growth factors contributes to an increase in
the proliferative activity of blood vessels and the growth of
ectopic endometrium.

Orazov et al. [41] revealed that higher VEGF expression
is characteristic of patients with adenomyosis-associated
pelvic pain compared with women with adenomyosis
and abnormal uterine bleeding. A high expression was
revealed in epithelial cells of the ectopic endometrium,
smooth myometrial myocytes, and stromal cells of the
myometrium. High expression of VEGF in the endometrium
and myometrium and the intensity of neovascularization
are one of the important mechanisms of angiogenesis in
adenomyosis and pathogenetic mechanisms of the formation
of chronic pelvic pain caused by this disease [41].

A high VEGF activity is associated with the onset of
oncological processes. The role of VEGF in the development
of endometrial hyperplasia and cancer in obesity has been
established [42].

Role of TWIST proteins in EMT

Twist and ZEB proteins can suppress apoptosis and
oncogenic aging. An increase in Twist expression leads to
a decrease in the level of E-cadherin expression, which
in turn causes activation of EMT. Twist also promotes
the activity of mesenchymal markers such as fibronectin,
vimentin, alpha-smooth muscle actin (alpha-SMA), and
N-cadherin.

Li [43] examined the expression of mRNA and the
level of proteins Twist, N-cadherin, and E-cadherin in
a group of patients with EGE in comparison with a control
group and revealed that Twist and N-cadherin were
expressed in both stromal cells and glandular epithelium.
As expected, the highest and lowest expressions of these
parameters were recorded in the ectopic endometrium in
ovarian endometriosis and in the endometrium of women
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in the control group, respectively. By contrast, E-cadherin
expression was the highest in the endometrium of women
without endometriosis. Thus, a positive correlation between
N-cadherin and Twist and a negative correlation between
E-cadherin and Twist indicate the key role of the protein
in EMT induction in endometriosis, namely, an increase in
the migratory and invasive capacity of endometrial stromal
cells [43].

The discovery of the pathogenic role of Twist in
the development of endometriosis may be a promising
therapeutic target for the treatment of the disease. lIts
inhibition can slow down the progression and reduce the
frequency of disease relapses.

Furuya et al. studied the factors ZEB (ZEB1/ZEB2) in
endometriosis and noted an increase in ZEB1 expression
in endometrioid foci [44]. In addition, ZEB1 expression was
most frequently detected in epithelial cells of infiltrative
endometriosis, which identifies ZEB1 as a potential indicator
of endometriosis invasiveness or severity.

Role of N-cadherin in the pathogenesis
of adenomyosis

N-cadherin is a member of the superfamily of integral
membrane glycoproteins that regulate cell adhesion and
cell motility. The transition from E-cadherin expression to
N-cadherin expression often occurs in many aggressive
forms of cancer [45]. N-cadherin stimulates the activation
of Snail and Slug, causing modulation of the FGFR, leading
to an increase in the invasion, proliferation, and metastasis
of carcinoma cells [45]. N-cadherin-mediated cell adhesion
accelerates the migration of cells in a three-dimensional
matrix; as a result, the transformed cells form elongated
multicellular chains and migrate faster than individual cells.
In adenomyosis, N-cadherin is activated in ectopic epithelial
cells and is actively involved in the disease pathogenesis.
The expression of N-cadherin in both the proliferative and
secretory phases of the menstrual cycle was significantly
higher in the endometrium of women with adenomyosis than
in women without adenomyosis.

Role of phosphatase and tensin homolog deleted
on chromosome 10 (PTEN) in adenomyosis
development

Among factors of the receptor status of the ectopic
endometrium and genetic abnormalities of these cells in
adenomyosis, the expression of the PTEN gene is interesting,
as its product catalyzes the cleavage of the phosphate group
at the position of the 3D inositol ring of phosphatidylinositol-
3-phosphates, thus participating in signal transduction in
the cell. The PTEN protein is a significant suppressor of the
PI3K/AKT/mTOR signaling pathway, which enables us to
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consider it as a tumor growth suppressor protein, and the
loss of PTEN function is often observed in both hereditary
and sporadic cancers.

PTEN controls various biological processes in cells,
including maintenance of genome stability, survival,
migration, proliferation, and metabolism. A slight decrease
in the level and activity of PTEN contributes to tumor
development and progression. PTEN regulation is the subject
of intensive research in tumor biology. New modes of PTEN
functioning and regulation have recently been discovered,
including the existence of its various isoforms and its ability
to form dimers. Thus, new therapeutic possibilities were
identified for the prevention and treatment of the oncological
process by regulating the PTEN function [46].

The expressions of the PTEN anti-oncogene and
a similar protein in endometrioid heterotopies and eutopic
endometrium are known to decrease in adenomyosis [21, 47].
A decrease in the expression level of the PTEN protein may
be associated with a mutation in the gene itself and its
promoter region. When assessing the expression of PTEN
in various forms of adenomyosis in patients with nodular
adenomyosis, the expression of the PTEN anti-oncogene in
the stroma of heterotopies correlated with the expression
of the same gene in the epithelium, whereas in the diffuse
form of adenomyosis, no correlation was registered between
these parameters. The absence of a correlation among the
immunohistochemical parameters of the eutopic and ectopic
endometrium indicates the autonomy of the pathological
processes of endometrioid heterotopias [48].

In 2017, Hu et al. [47] evaluated the expression of PTEN
and proteins associated with the cell cycle and apoptosis
in the endometrium of the adenomyosis group and control
group. As a result, the expression of miR-17 was significantly
increased in the endometrial tissues of the adenomyosis
group (p < 0.05), which can affect cell apoptosis and PTEN
regulation and contribute to the onset and development
of adenomyosis. By contrast, the expression of PTEN
protein was significantly lower in the endometrium of the
adenomyosis group than in the control group (p < 0.05).
When miR-17 expression was suppressed, PTEN expression
increased (p < 0.05).

Notch1/Numb/Snail signaling pathway

The Notch family, which includes four members
(Notch1-4), represents transmembrane receptor pro-
teins [49]. Mature Notch receptors are heterologous dimers
that consist of a large extracellular ligand-binding domain,
a single-pass transmembrane structure, and a small cy-
toplasmic subunit (Notch intracellular domain, NICD) [50].
Transmembrane ligands Delta/Serrate and Lag2 family bind
to Notch receptors, causing heterodimer cleavage and NICD
release. The NICD is then transported into the nucleus and
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modulates the transcription of downstream target genes, in-
cluding those associated with EMT, such as Snail and Slug,
as described above. Snail and Slug subsequently bind to the
E-cadherin promoter, suppressing its expression [51]. De-
spite the similarities, the four Notch receptors are structur-
ally different, which probably determines their expression
patterns and unique functions. The activation of the Notch
signaling pathway is initiated by two sequential proteolytic
cleavages of Notch, which are induced by ligand-receptor
interaction between two adjacent cells.

The Notch signaling pathway regulates cell development,
proliferation, survival, and differentiation of cells in various
organs, while uncoupling of the cascade links results in the
development of malignant tumors [52, 53]. The prototype of
the signaling pathway associated with the Notch signaling
pathway is human acute lymphoblastic leukemia/lymphoma
(T-ALL). The NOTCH1 gene has been found in a specific
chromosome translocation found in some human T-ALL
cases. After this discovery, mutations in the NOTCHI gene
are found in most cases of T-ALL in humans, which leads
to the aberrant activation of the Notch signaling pathway.
These data reveal that the Notch signaling pathway plays an
important role in the pathology of T-ALL, and the activation
of mutations in the NOTCHI gene is the main cause of
T-ALL development. In addition, overexpression of Notch1 is
observed in breast and pancreatic cancer [53, 54]. However,
the Notch cosignaling pathway acts as a tumor suppressor
in neuroendocrine tumors such as carcinoid and medullary
thyroid cancer [55]. These results suggest that the Notch
signaling pathway can act as a tumor suppressor or an
oncogenic factor in humans, depending on the cell type and
context. Thus, the detection of a higher expression of Notch1
in women with endometrial cancer than in the endometrium
of healthy women is significant [56].

The transcription factor Notch1 can be an EMT inducer,
and the suppression of Notch1 expression promotes partial
EMT reversal and a decrease in the expression of genes
responsible for maintaining pluripotency. Notch signal
transmission can also stimulate TGFf 1-induced EMT through
induction of Snai1 [57]. In various human cancer models, the
activation of Notch signal transmission mediated by Jagged!
can increase the expressions of Snail and Slug, which leads
to E-cadherin suppression and triggers the aforementioned
processes [58].

In EMT, Notch signals are transmitted with multiple
transcription and growth factors such as Snail, Slug,
TGFB, FGF, and PDGF [59, 60]. A significant increase in the
expression of Notch1 was found in the endometrium with
adenomyosis in both the proliferative and secretory phases
when compared with the values in the control group. A high
expression of Notch1 in adenomyosis indicates its significant
role in disease pathogenesis as well as in the differentiation
and decidualization of endometrial stromal cells. In the human
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endometrium, Notch1-3 is expressed not only in stromal cells
but also in glandular epithelial cells, and the expressions of
Jagged and DDL4 are mainly noted in glandular epithelial
cells [61]. In some studies, the expression of Notch1 in the
endometrium of women with adenomyosis was higher in
the proliferative phase than in the secretory phase and is
the lowest in the postmenopausal period [5]. By contrast,
Cobellis et al. established that the expressions of Notch1 and
Jagged1 increased from the proliferative to the secretory
phase [56]. In endometrial carcinoma, the expressions
of Notch, Jagged1, and DLL4 are significantly increased
and are associated with disease stage and prognosis, and
blocking the Notch signaling pathway inhibits the growth and
invasion of endometrial adenocarcinoma cells [62]. Blocking
the Notch signaling induces apoptosis in Ishikawa cells [63],
while increased estrogen levels promote the growth of these
cells by activating the Notch signaling pathway [64]. Blocking
the Notch signal transmission pathway by c-secretase led
to the suppression of cell proliferation by regulating the cell
cycle and apoptosis in Ishikawa cells. Given the important
role of the Notch signaling pathway in tumor development,
these results suggest that c-secretase may be a potential
target for new therapeutic strategies for the prevention of
endometrial cancer.

In the Notch1/Numb/Snail signaling pathway, the
Numb protein acts as an inhibitory regulator of Notch1
signaling, which acts by stimulating ubiquitination and
degradation of the Notch1 intracellular domain. lts functions
include the regulation of cell division, adhesion, and
migration. The suppression or loss of Numb expression
may correlate with the development and enhancement
of invasion of multiple tumors [65]. Qi et al. [5] were the
first to investigate the role of Numb in the development of
adenomyosis. The expression of Numb did not change during
the menstrual cycle either in the endometrium of healthy
women or in the endometrium of women with adenomyosis,
which indicates the hormonal independence of this protein
expression. In adenomyosis, the expression of Numb in the
ectopic endometrium was reduced compared with that in
the endometrium of the control group. This suggests that
aberrant negative regulation of Numb may be associated
with the genesis and development of adenomyosis.

TGFP1/Smad3 signaling pathway
in adenomyosis

In adenomyosis and EGE, platelet TGF31 activates the
TGFB1/Smad3 signaling pathway, which leads to triggering
of EMT, smooth muscle metaplasia, transformation of
fibroblasts into myofibroblasts, and development of
fibrosis [22]. The discovery and further study of this
signaling pathway elucidate the importance of the platelet
link in the pathogeneses of EGE [66] and adenomyosis [30].
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Zhang et al. [22] examined the activation of the TGF(31/
Smad3 signaling pathway in endometrioid cells. They
revealed that the expressions of TGF31 genes and proteins
phosphorylated by Smad3 in endometrial samples from
women with endometriosis after co-culturing with activated
platelets were significantly increased compared with
that in the endometrial samples from women without
gynecological diseases.

Owing to the cyclic activation of endometrioid heterotopies,
platelets enter the microenvironment from the damaged
vasculature and are activated in the surrounding space,
which results in the activation of thrombin, thromboxane A2
(TXA2) and, possibly, collagen produced by heterotopies of
stromal cells. Through the release of TGFB1 and induction
of the TGFB/Smad signaling pathway, activated platelets
promote EMT triggering, transformation of fibroblast
into myofibroblast, which leads to an increase in cell
contractility, collagen synthesis, smooth muscle metaplasia,
and increased fibrogenesis. Platelet TGFPB1 and the TGFP/
Smad signaling pathway co-promote EMT, myofibroblast
development, and fibrous transformation, ultimately leading
to fibrosis, which is characteristic of endometriosis and
adenomyosis. The researchers leave open the possibility
that myofibroblasts may also originate from other sources,
such as in pathological tissue regeneration, and suggest the
simultaneous participation of other signaling pathways or
immune cells in EMT in endometriosis.

The development of fibrosis is influenced by various
pathophysiological mechanisms resulting from chronic,
recurrent, frequent inflammatory changes caused by various
stimuli such as repeated injury. Fibrogenesis enhancement
underlies wound healing, tissue neogenesis, remodeling, and
development of fibrosis. The described processes, namely,
the ability to fibrosis, are characteristic of endometriosis
and adenomyosis. Thus, endometrioid heterotopies are
not only separate proliferating endometrial stromal and
epithelial cells, but they interact and are closely related to
the microenvironment, contact with other cells (platelets
and macrophages), and contain all the necessary molecular
components to activate fibrogenesis. Moreover, endometrioid
cells are not static but can evolve to fibrosis, acquiring new
phenotypes. This provides further evidence that tissues
affected by endometrioid heterotopies undergo repeated
damage and healing, which ultimately leads to fibrous lesions
resistant to hormonal treatment [67]. This dynamic process
may explain some of the conflicting research findings and
the lack of universal and specific biomarkers for diagnostics
and prognosis of genital endometriosis. The TGFf3/Smad
pathway is a therapeutic target for endometriosis and
adenomyosis. Thus, the discovery of the role of platelets
in disease pathogenesis helps determine the appropriate
biomarkers and recommend anticoagulant drugs for use in
non-hormonal therapy of endometriosis.
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Signaling pathway of elF3 in adenomyosis

Translational control plays a major role in the regula-
tion of protein expression and occurs mainly at the initiation
stage, which is controlled by multiple eukaryotic transla-
tion initiation factors (elFs) [68]. According to a recent tran-
scriptome analysis of eutopic endometrium in women with
adenomyosis, the eukaryotic initiation factor (elF2 2) and
eukaryotic initiation factor 3 (elF3) signaling pathways are
involved in EMT. Suppression of elF3e in endometriosis can
increase the translations of Snail and Zeb2, which in turn
triggers the EMT mechanism. In addition, stable elF3e levels
promote wound healing through enhanced angiogenesis. As
indicated above, endometrioid lesions are partly wound sur-
faces that undergo repeated tissue damage and repair, and
adenomyosis is characterized by the loss of epithelial prop-
erties of cells and acquisition of mesenchymal properties of
cells. elF3e can be also involved in EMT in EGE and adeno-
myosis [9, 69]. elF3e is involved in EMT in endometriosis
through TGFB1 activation and promotes cell proliferation by
enhancing angiogenesis in the ectopic endometrium. elF3e
immunoreactivity is significantly reduced in adenomyosis in
comparison with that women without adenomyosis.

A study found an increase in the immunoreactivities
of TGFB1, Snail, and vimentin, as well as a significant
decrease in the level of E-cadherin in the epithelial cells of
endometrioid lesions, which determines the initiation and
implementation of EMT [9]. In addition, the degree of elF3e
staining correlated positively with the levels of E-cadherin
and negatively with the levels of the aforementioned
mesenchymal factors.

Considering the important role of platelets in the
development of endometriosis and adenomyosis, the
coagulation properties of the patients’ blood were studied.
The activated partial thromboplastin time and thrombin
time were significantly reduced and fibrinogen levels were
increased in women with endometriosis when compared with
women without endometriosis. Women also had a significant
increase in the number of circulating degranulated platelets,
and their proportion decreased significantly 1 month after
surgical treatment of endometriosis. These data indicate
a state of hypercoagulation in women with endometriosis and
indicate a close relationship between the coagulation system
and inflammatory process [70]. In coagulation assessment,
changes in the myometrium in adenomyosis are quite similar
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