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The incidence of type 1 diabetes mellitus is increasing worldwide, and the number of people with vitamin D deficiency in
all age groups, including children and adolescents, is simultaneously growing in the world. Over the past decades, it has been
found that vitamin D, in addition to participating in the regulation of calcium homeostasis and bone metabolism, has an anti-
inflammatory and immunomodulatory effect. Epidemiological evidence suggests the involvement of vitamin D deficiency in
the pathogenesis of type 1 diabetes mellitus. Polymorphisms in genes important for vitamin D metabolism also modulate the
risk of type 1 diabetes mellitus. Several studies have evaluated the role of vitamin D as adjuvant immunomodulating therapy
in patients with newly diagnosed type 1 diabetes mellitus. The purpose of this review is to present current data on the involve-
ment of vitamin D in the pathogenesis of type 1 diabetes mellitus and to evaluate its role as a drug for the prevention of the
disease and its use in treatment in addition to insulin therapy.
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3aboneBaeMocTb caxapHbiM AMabeToM 1-ro TMNa B MUpe YBENWMUMBAETCA, TaKMKe pacTeT KONMYECTBO Nloden ¢ Hefo-
cTaTKoM BWUTaMuHa D Bo Bcex BO3pacTHbIX rpynnax, BKMOYaA 4eTer W MofpocTKoB. B nocnegHue pecATuneTva BoiABne-
Ho, uT0 BUTaMWH D KpoMe perynAauMuM roMeoctasa KanbUWA U MeTabonn3Ma KocTel OKa3biBaeT NPOTUBOBOCMAIMTENIbHOE
¥ UIMMYHOMOZynuMpYloLLee feicTBUE. INMOEMMOMIOrMYECKNE aHHbIe CBUAOETENLCTBYIOT O BOBNEYEHUN AepuunTa BUTaMK-
Ha D B natoreHe3 caxapHoro guabeta 1-ro Tuna. Monumopduambl B FreHax, BarHbIX A1A MeTabosm3Ma BuTaMuHa D, Takike
MOJYNMPYIOT PUCK BO3HUKHOBEHUA CaxapHoro auabeta 1-ro Tuna. B page vccnegoBanui 6bina oueHeHa ponb BUTaMuHa D
B KauecTBe a[iblOBaHTHOM MMMYHOMOZYNMpYIOLLEWA Tepanuy Y NauueHToB C HeJABHO BbIABNEHHBIM caxapHbIM AuabeTom
1-ro Tvna. Llenb naHHoro o63opa — npeAcTaBUTb COBpEMEHHbIE AaHHbIe 06 y4yacTum BuTamuHa D B natoreHese caxapHo-
ro nguabeta 1-ro TMNa v OLEHWTb €r0 posib B KaYecTBe npenaparta anA Npo¢unakTMKM 3ab0NeBaHMA U LONOSHUTENBLHOMO
MPUMEHEHWA NPU UHCYSIMHOTEpanuu.
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In recent decades, the incidence of type 1 diabetes
mellitus (T1DM) has been increasing by 3% annually, with
a significant rise noted among young children [1-4]. Currently,
there are 542,000 children and adolescents under the age of
14 years with TIDM worldwide, and most of them live in
the United States, India, Brazil, and China [5]. The highest
prevalence of TIDM is registered in Finland (more than
60 cases of newly diagnosed DM per 100,000 population
per year) and Sardinia (more than 40 cases per 200,000 per
year) [3, 6]. It should be noted that the number of people
with vitamin D deficiency in all age groups, including children
and adolescents, is growing in the world at the same time,
which suggests the involvement of vitamin D deficiency in
T1DM pathophysiology [7, 8]. The incidence of vitamin D
deficiency in the population varies from 20% to 90% [9-11].
Deficiency and lack of vitamin D are widespread regardless
of a country’s geographic location, as vitamin D deficiency
was revealed in 81.1% and 84.1%-86.9% of women of
reproductive age in Brazil [10] and the North-West region of
the Russian Federation, respectively [11].

There are no data on optimal serum vitamin D lev-
els. According to the Russian Association of Endocrinolo-
gists, the sufficient vitamin D level in the blood serum
is 30-60 ng/mL (75-150 nmol/L). A vitamin D level of
20-30 ng/mL (50-75 nmol/L) indicates insufficiency, less
than 20 ng/mL (50 nmol/L) indicates deficit, and above
60 ng/mL (150 nmol/L) indicates a high serum concentra-
tion [12].

Vitamin D synthesis and metabolism

Vitamin D includes a group of secosteroids that are
similar in chemical structure, namely, vitamin D, is
a compound of ergocalciferol and lumisterol, vitamin D, is
ergocalciferol, vitamin D, is cholecalciferol, vitamin D, is
dihydrotachysterol, vitamin D; is sitocalciferol, and vitamin D,
is sigma-calciferol [13]. In humans, vitamin D is mainly
produced in the skin under the influence of ultraviolet (UV)
radiation (80%), and a small amount (20%) enters the body
with food [14]. Exposure to sunlight promotes the formation
of vitamin D only in the form of vitamin D, which is produced
in the skin from 7-dehydrocholesterol. Then, vitamin D,
is transported to the liver using the vitamin D-binding
protein (VDBR), where it undergoes 25-hydroxylation with
the involvement of the CYP2R1 enzyme and is metabolized
to 25-hydroxycalciferol 25(0H)D-calcidiol [15]. Then,
25(0H)D is transported to the kidneys, and as a result of
To-hydroxylation (CYP27B1 enzyme), it is transformed into
1,25-dihydrooxycholecalciferol [1,25(0H),D,], known as
calcitriol, which is the most biologically active metabolite
of vitamin D. To assess the vitamin D status in clinical
practice, it is recommended to determine serum 25(0H)D
instead of 1.25(0H),D because the latter has a short half-life
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of 6-8 h, which leads to significant daily fluctuations in
serum concentration. The half-life of 25(0H)D is 3 weeks. In
addition, in various diseases, as well as during pregnancy,
the 1.25(0H),D level can be increased, despite an actual
vitamin D deficiency [16]. A recent clinical report [17] showed
that serum-free and serum bioavailable 25(0H)D, but not
total 25(OH)D, are the most reliable markers for assessing
vitamin D status.

Calcitriol initiates a signaling cascade by binding to the
nuclear vitamin D receptor (VDR), which forms a heterodimer
with the retinoic acid X receptor (RXR) and then binds to
specific DNA sequences (vitamin D response elements),
regulating the transcription of several genes [15]. VDR is
encoded by a large gene located on chromosome 12q12q—-q14
and includes two promoter regions, eight protein-coding
exons, and six untranslated exons (1a-1f) [18]. VDR is found
in almost all human cells (including immune cells) [19].
Vitamin D, in addition to calcium hemostasis and bone
metabolism, is involved in cell growth modulation, as well as
antiproliferative, anti-inflammatory, and immunomodulatory
processes [20, 21].

Immunomodulatory effects of vitamin D

Vitamin D affects both the innate and adaptive immune
systems through the VDR. Functional VDR has been identified
in almost all immune cells, including antigen-presenting cells
and T-lymphocytes, which is indirect evidence of vitamin D’s
effect on the immune system [22, 23]. Immune cells,
especially antigen-presenting cells (activated macrophages
and dendritic cells), express the enzyme 1a-hydroxylase and,
thus, can synthesize and secrete calcitriol under the action of
interferon-gamma (IFN-y) [24, 25]. The immunomodulatory
effects of vitamin D depend on the ability of its biologically
active form, calcitriol, to regulate the expression of genes
involved in cell proliferation, differentiation, and functioning
[19, 26, 271.

Calcitriol suppresses adaptive immune responses,
contributing to the induction of immunological tolerance,
and has an anti-inflammatory effect through the following
mechanisms:

« It inhibits the differentiation, maturation, and function of
dendritic cells, preventing their action as mature antigen-
presenting cells [28, 29].

« It stimulates the generation of defensins and promotes
the differentiation and activation of macrophages, in-
creasing their antimicrobial activity and enhancing che-
motaxis and phagocytosis [30].

« It stimulates T cells by reducing the surface expression
of major histocompatibility complex (MHC) class Il mol-
ecules (molecules of the main class of histocompatibility)
and promotes a shift in the polarization of macrophages
from the proinflammatory phenotype (M1 or “classi-
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cally activated” macrophages) toward anti-inflammatory

(M2 or “associated macrophages”).

+ It inhibits the expression of proinflammatory cytokines by
monocytes and macrophages [31-34].

« It has a direct inhibitory effect on the differentiation of
B cells and production of immunoglobulins [35, 36].

+ It normalizes the production of regulatory T cells and po-
larization of Th-cells, increases the number of Th, cells,
and inhibits the production of Th, and Th,, cells, thereby
stimulating the shift of T cells from the “effector” to the
“regulatory” phenotype [37, 38].

« It prevents the hyperactivation of CD8" T cells and re-
duces the secretion of IFN-y and tumor necrosis factor
(TNF-ou) [39].

« It regulates the production of cytokines by immune cells,
increasing the production of anti-inflammatory cytokines
(interleukin [IL]-4 and IL-10) and decreasing the synthe-
sis of proinflammatory cytokines (IL-1p, IL-2, IL6, IL-17,
IL-22, TNF-a., and IFN-y) [40, 41].

The immunomodulatory effects of calcitriol, namely,
the stimulation of induction of immune tolerance and T-cell
anergy, impairment of B-cell activity and antibody produc-
tion, and reduction of inflammatory responses, suggest the
therapeutic potential of vitamin D in autoimmune diseases,
including T1DM. Vitamin D probably plays an important role
in reducing the risk of autoimmune diseases and improving
their course.

Vitamin D deficiency in young NOD mice has been re-
vealed to lead to higher morbidity and early T1DM develop-
ment [42]. Calcitriol and its analogs prevent the develop-
ment of DM in NOD mice, especially when administered at
an early age, before an immune-mediated attack on beta
cells [43, 44]. The disease progression can be stopped
through administrating calcitriol at an older age and in
a later phase of the disease [45]. Mathieu et al. showed that
long-term treatment with high calcitriol doses (5 pg/kg),
which was administered daily or every other day, led to
a decrease in the incidence of DM in NOD mice without
causing serious side effects [44]. Gregori et al. [45] re-
vealed that short-term administration of a calcitriol analog
to NOD mice suppresses the production of IL-12 and IFN-y,
terminates the infiltration of pancreatic islets by Th, cells,
and increases the number of regulatory CD4* and CD25*
T cells in the lymph nodes of the pancreas, thereby inhib-
iting DM development. NOD mice treated with calcitriol
showed a significant change in the cytokine secretion pro-
file from Th, (IFN-y) to Th, (IL-4) [37]. In addition, dendritic
cells exposed to calcitriol or its analog TX527 change the
response pattern of GAD65, which are specific clones of
T cells, inhibiting proliferation and promoting apoptosis [46].
Takiishi et al. [47] demonstrated that in NOD mice fed a diet
enriched with vitamin D, (800 IU/day) throughout their life
(3-35 weeks), the incidence of DM was significantly lower,
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and the insulin content in the pancreas was higher than in
animals of the control group.

Inflammation plays an important role in the pathogenesis
of T1DM, contributing to beta-cell dysfunction and apoptosis
through cytokines and chemokines produced by both beta
cells and immune cells [48]. Calcitriol increases the level of
the antiapoptotic protein A20 and reduces IL-6 production,
nitrogen synthesis, and MHC class | molecule expression in
isolated human pancreatic islets exposed to anti-inflamma-
tory cytokines such as IL-13, TNF-a, and IFN-y [48]. Wei et
al. [49] revealed that the association of VDR with the chro-
matin remodeling complex (PBAF) enhances the VDR-depen-
dent transcriptional program and leads to a decrease in the
cytokine-induced proinflammatory response in beta cells and
preservation of their function in both humans and NOD mice.

Role of vitamin D deficiency in the pathogenesis
of type 1 diabetes mellitus

A large array of works indicated the role of vitamin D
in beta-cell function and insulin secretion. Norman
et al. [50] demonstrated for the first time that vitamin D
deficiency suppresses insulin secretion in a rat's pancreas.
It was established that beta cells of the human pancreas
are capable of expressing both 1o-hydroxylase and VDR
[51, 52]. VDRs have been identified in the human insulin gene
promoter [53]. According to Bourlon et al. [54], calcitriol
promotes de novo insulin biosynthesis and accelerates the
transformation of proinsulin into insulin in rat pancreatic
islets. The administration of vitamin D to mice and rabbits
in deficiency cases leads to the elimination of disorders in
insulin secretion [50-56]. This suggests that vitamin D and
its analogs can protect beta cells from immune-mediated
attack, facilitating the transition of Th, cells to Th, cells,
reducing the infiltration of pancreatic islets by Th, cells, and
minimizing cytokine-induced damage to beta cells.

Various gene polymorphisms involved in vitamin D me-
tabolism, especially those encoding vitamin D hydroxylases,
VDBR and VDR, may influence the risk of T1DM. In 2007,
Ramos-Lopez et al. [57] identified an association of single
nucleotide polymorphisms (SNPs) in the CYPZR1 gene en-
coding vitamin D 25-hydroxylase in patients with T1DM and
serum 25(0H)D levels; therefore, they suggested that the
G allele of SNP rs10741657 predisposes the development of
T1DM, whereas the A allele of the same SNP protects against
disease development. Another study revealed a significant
relationship between SNP rs10741657 and rs12794714 in
the CYPZR1 gene and the risk of T1DM [58]. In a large case-
control study conducted in the UK, involving 7854 patients
with T1DM and 8758 healthy people, an association was es-
tablished between two SNPs (rs10877012 and rs4646536)
in the CYPBT gene encoding vitamin D 1a.-hydroxylase with
T1DM [59]. The authors also reported that the GG genotype
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CYP2R1 (SNP rs10741657) or the CC genotype CYP27B1
(SNP rs10877012) increases the risk of T1DM [60]. People
with both genotypes had a significantly higher risk of T1DM
than those with only one genotype, indicating a potential
synergy between the GG genotype CYPZRT and the CC geno-
type CYP27B1 in determining the risk of TIDM development.
In addition, the serum 25(0H)D level was significantly lower
in people with the GG genotype CYPZR1 and the CC genotype
CYP27B1 than in those with the AA CYPZRT and AA CYP27B1
genotypes, respectively. However, Danish researchers did
not find an association between SNP CYPZRT and CYP27B]1
(rs10741657 and rs4646536, respectively) and the risk of
T1DM in children [61].

The potential role of VOR gene polymorphisms in the
pathogenesis of T1DM has been suggested. A major study
TEDDY by Norris et al. [62] examined 424,788 newborns (in
six US states and five European countries) between 2004
and 2010. The results of the primary screening revealed that
8676 children had an increased risk of developing T1DM (the
presence of GADA, IAA, and IA-2A antibodies in children) with
and without first-line relatives with TIDM. The study was
conducted in children aged 4 months and lasted for 6 years.
The polymorphism in genes VDR, CYP24A, CYP27B1, GC, and
RXR was analyzed. Vitamin D 25(0H) deficiency was found in
42% of children in the TEDDY study and 22%—67% of children
with developed T1DM. The highest plasma concentrations of
vitamin D 25(0H) and a low risk of T1DM were recorded in
children with the minor allele of the vitamin D receptor, VDR
rs7975232. Norris et al. showed that higher 25(0H)D levels
contribute to a decrease in possible autoimmune damage to
the islet apparatus of the pancreas in children with a genetic
predisposition to TIDM. A recent study revealed that higher
25(0H)D levels in umbilical cord blood were a favorable
predictor of a reduced risk of developing T1DM in children
homozygous for the VDR rs11568820 G/G genotype [63].
Habibian et al. [64] demonstrated an association between
an increased risk of TIDM and some polymorphisms in
the VDR gene (especially Bsm-I and Fok-I), although the
alleles most predisposing to T1DM development are still not
definitively identified. A sufficient 25(0OH)D level in serum
(=30 ng/mL) and some SNP genotypes (Tagl and Bsml) in
the VDR gene were interrelated with an increased C-peptide
level in patients with newly diagnosed T1DM, which probably
contributes to the preservation of function of pancreatic
residual beta cells [64]. Research results indicate that
SNPs in genes that are important for vitamin D synthesis,
transport, and action may influence the risk of T1DM.

Vitamin D levels in patients with T1DM

In recent decades, there has been an increase in the
prevalence and incidence of vitamin D deficiency and
TIDM [3, 7, 65-67]. The DIAMOND research team found
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a higher incidence of T1DM (data collected from 1990 to
1994) in countries located at higher latitudes (with low
UV radiation). The number of newly diagnosed T1DM cases
per 100,000 population per year is 36.5 in Finland, 27.5 in
Sweden, and 21.2 in Norway [68]. Some studies have
demonstrated a seasonal pattern of T1DM onset, namely,
increased incidence in winter, early spring, and late autumn
with a pause in summer [69-71]. Mohr et al. [71] revealed
that low intensity of UV radiation contributed to the higher
incidence of TIDM in childhood. In addition, the authors
reported a gradual increase in the incidence of T1DM in
Finland (from 18 per 100,000 population in 1965 to 64 per
100,000 in 2005), which, in their opinion, was associated
with the introduction of official state recommendations on
gradually reducing the daily intake of vitamin D into medical
practice [71]. In patients with newly diagnosed T1DM, the
25(0H)D levels were significantly lower than in healthy
people [72-75]. According to a study conducted in Sweden,
which involved 459 patients with T1DM aged 15-34 years,
the 25(0H)D levels in their blood was significantly lower than
in patients of the control group [92]. Similar results were
obtained by researchers in India, Italy, Qatar, and Kuwait
[73-76]. In Switzerland, 129 children and adolescents with
T1DM were vitamin D deficient in 60.5% of cases, and vitamin
D deficiency was registered in 26.4% of cases [77].

Effect of vitamin D on the course of T1DM:
epidemiological evidence

The problem of vitamin D deficiency in T1DM patients
is well known, but it is not entirely clear whether an
insufficient concentration of vitamin D is a trigger of T1DM or
a consequence of the disease. According to the literature, the
effect of vitamin D on the risk of developing T1DM depends
probably on the patient’s age [78]. A cohort study in Norway,
which included 29,072 female patients, showed that 25(0H)D
levels during pregnancy were significantly lower in women
whose children developed T1DM during the first 15 years of
life [79]. In addition, in pregnant women with a 25(0H)D level
of 21.6 ng/mL or lower in trimester |, the risk of developing
T1DM in children was twice as high. Jacobsen et al. [80]
noted a significant risk of developing T1DM (1.5-2 times
higher) in children under 14 years of age whose mothers
did not consume vitamin D-fortified margarine during
pregnancy than in those whose mothers used it. However,
Miettinen et al. [81] did not reveal significant differences in
25(0H)D levels during pregnancy in mothers whose children
subsequently (by the age of 7 years) developed T1DM than
in women in the control group. Dong et al. [82] did not report
a significant association between the intake of vitamin D
by women during pregnancy and the risk of TIDM in their
children. Silvis et al. [83] found that vitamin D intake during
pregnancy does not affect the risk of developing T1DM in
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children with an increased genetic predisposition to the
disease.

At the same time, according to various studies, the intake
of vitamin D in early childhood has a more pronounced effect
on reducing the risk of developing T1DM than intrauterine
exposure to this vitamin. A study in Finland showed that vita-
min D supplementation during the first year of life in infants
reduced the incidence of T1DM. Moreover, vitamin D intake
at a dose of 2000 IU per day reduced the risk of T1DM more
significantly (4-5 times) than at a dose of less than 2000 U
per day [84]. According to the multicenter study EURODIAB 2,
vitamin D intake from early childhood (data collected using
standardized questionnaires and surveys) contributed to
a decrease in the risk of developing T1DM in later life [85].
Stene et al. [86] showed the importance of timing of vita-
min D intake in childhood. Children who received cod liver oil
supplements at the age of 7 years to 12 months had a lower
risk of T1DM than those who received these food additives
before the age of 6 months. This is probably because the
adaptive immune system does not fully mature during the
first months of life, and the beneficial immunomodulatory
effect of vitamin D is absent. Thus, in young children, vita-
min D protects against T1DM. The effect of vitamin D and its
supplementation during pregnancy on the risk of developing
T1DM is currently being discussed and requires clarification.

At a young age, vitamin D has a clear effect on TIDM deve-
lopment. Gorham et al. [87], among US military personnel, de-
monstrated that in T1DM patients, the 25(OH)D level was signifi-
cantly lower 1year before the disease was diagnosed. In another
study, individuals with a normal 25(0H)D level (=100 nmol/L)
were less likely to develop T1DM than those with a 25(0H)D
level lower than 75 nmol/L [88]. There was also a trend toward
a higher T1DM risk in those with the lowest 25(H)D levels.

Vitamin D deficiency is associated with various vascular
DM complications. In Canada, 14 studies were analyzed,
including 10,007 T1DM patients with diabetic retinopathy.
A statistically significant relationship was established
between the severity of vitamin D deficiency and diabetic
retinopathy [89]. The prospective study EURODIAB, which
included 532 patients with T1DM at the age of 40 + 10 years,
showed that the higher the 25(OH)D level is, the lower is the
incidence of macroalbuminuria. There was no relationship
between vitamin D levels and other vascular complications
such as microalbuminuria and nonproliferative and
proliferative retinopathy [90]. A Japanese study of 75 patients
with T1DM and diabetic retinopathy revealed no relationship
between vitamin D levels and T1DM complications [91].

Vitamin D as an adjuvant therapy for T1DM

According to numerous studies, vitamin D in T1DM pa-
tients has a positive effect on the maintenance of residual
pancreatic beta-cell function and glycemic control [92, 93].
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The patients under follow-up showed a higher stimulated
C-peptide level on an empty stomach and/or a lower dai-
ly insulin dose. Mishra et al. [94] revealed a tendency for
a slower decrease in the residual function of pancreatic beta
cells in T1DM patients who received vitamin D in addition to
insulin therapy. In addition, the intake of calcidiol contrib-
uted to significant suppression of autoaggression and had
a protective effect on the function of beta cells [95]. Gabbay
et al. [96] demonstrated that daily supplementation of chole-
calciferol to insulin at a dose of 2000 IU for 12 months con-
tributed to a significant increase in the number of regulatory
T cells in patients with recently diagnosed T1DM (disease
duration less than 6 months). Glycated hemoglobin (HbA1c)
level after 6 months, as well as anti-GAD65 antibody ti-
ters after 18 months, decreased significantly in the group
of patients who took calciferol than in those who received
placebo. Two retrospective studies conducted among T1DM
patients showed that 3-month adjuvant therapy with cho-
lecalciferol at various doses (400—6000 1U/day) resulted in
an improvement in glycemic parameters and a decrease in
HbA1c levels after treatment [93, 95]. In a prospective study,
Panjiyar et al. [97] revealed that cholecalciferol supplemen-
tation at a dose of 3000 IU per day as adjuvant therapy for
12 months improved glycemic parameters and slowed down
the residual function of beta cells in T1DM pediatric patients.
At the end of the study, the children had lower mean fasting
glucose values, as well as decreased HbA1c and total daily
insulin levels, and higher mean stimulated C-peptide levels
than the control patients receiving insulin therapy alone. It is
noteworthy that the mean serum 25(0H)D levels in T1DM
patients remained in a sufficient range (>30 ng/mL) at all
subsequent visits.

However, other studies have not found significant
changes in the course of T1DM with the addition of vitamin D
to insulin therapy. So, Shih et al. [98] reported that the use of
cholecalciferol at a dose of 20,000 IU per week for 6 months
did not affect the HbA1c level and daily insulin demand.
In 2017, Perchard et al. [99] demonstrated that a single oral
dose of 100,000 or 160,000 IU of cholecalciferol did not lead
to any significant differences in HbA1c levels in children with
vitamin D deficiency and T1DM. The authors hypothesized
that a single high dose of oral cholecalciferol could not
maintain residual serum 25(0H)D levels over an extended
follow-up period.

In other studies, it was revealed that in T1DM patients,
when using cholecalciferol in combination with omega-3
polyunsaturated fatty acids, protective effects were noted
on the pancreatic beta-cell function. The study by Niinisto
et al. [100], which focused on the prognosis and prevention of
DM in Finland, included 7782 children with a human leukocyte
antigen predisposition to T1DM. The authors showed that
an increase in the ratio in blood serum of arachidonic acid
and docosahexaenoic acid at 3 months old and a higher
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omega-6/omega-3 ratio at 6 months old are significantly
associated with an increased risk of developing T1DM.
In the experimental work, Bi et al. [101] demonstrated that
supplementing the diet of NOD mice with omega-3 reduces
the incidence of severe DM and the level of proinflammatory
cytokines. According to a retrospective study, the intake of
cod liver oil (high amounts of vitamin D and omega-3) during
pregnancy and the first year of life reduces the risk of TIDM
later in life, which suggests a synergistic effect of vitamin D
and omega-3 polyunsaturated fatty acids [86, 102].

In the studies of the last decade, it has been established
that the effect of vitamin D is associated not only with the
regulation of calcium and phosphorus homeostasis but also
with its anti-inflammatory and immunomodulatory effects.

There is growing evidence that vitamin D deficiency may
be significant in TIDM pathogenesis. Adequate vitamin D
intake, especially during early childhood, can reduce the risk
of DM later in life. Thus, timely detection and elimination
of vitamin D deficiency during the first years of life in
children with a high genetic risk of TIDM may prevent the
development of this disease in the future. Since 2019,
the UK Scientific Advisory Committee has recommended
dietary vitamin D intake of 400 IU per day for populations
of 4 years of age and older given the global prevalence of
vitamin D deficiency [103]. The American Society of Clinical
Endocrinology recommends a minimum vitamin D intake of
400 IU per day for children (under 1 year old) and 600 U per
day for children, adolescents, and adults [104].
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