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The constant frequent incidents of fetal hypoxia during pregnancy and childbirth remain the leading unsolved problem in
modern practical obstetrics. In some cases, the onset of a pathological process can be diagnosed earlier due to the on-time
monitoring of functional disorders of the fetus. However, the existing diagnostic methods do not show the compensatory and
adaptive capabilities of the fetus; do not lead to an in-depth understanding of the pathophysiology of this condition and do not
contribute to the implementation of evidence-based therapy. This review summarizes current knowledge about the diagnosis of
functional disorders of the fetus and discusses possible ways of assessing adaptive mechanisms in response to stress during
pregnancy and childbirth. The article shows the development of biochemical methods for diagnosing functional disorders of
the fetus. The putative biochemical markers for assessing the compensatory capabilities of the fetus during pregnancy and
childbirth are presented.

Keywords: fetal hypoxia; fetal distress; brain-derived neurotrophic factor; glial cell-derived neurotrophic factor.

To cite this article:
Rozhdestvenskaya OV, Kokaya AA, Bezhenar VF. Biochemical factors of hypoxia and their role in assessing the functional state of the fetus. Journal of Obstet-
rics and Women's Diseases. 2021;70(6):117-126. DOI: https://doi.org/10.17816/JOWD71300

Received: 04.06.2021 Accepted: 22.10.2021 Published: 29.12.2021
V-2
ECOeVECTOR The article can be used under the CC BY-NC-ND 40 license

© 0V. Rozhdestvenskaya, AA. Kokaya, VF. Bezhenar, 2021

17


https://crossmark.crossref.org/dialog/?doi=10.17816/JOWD71300&domain=PDF&date_stamp=2021-12-15

18

0b30P Tom /70, N2 6, 2021 HKypHan akyLIepCTBa U KEHCKYIX bone3Hei

YK 618.29-008.9-001.8
DOI: https://doi.org/10.17816/JOWD71300

buoxuMuuyeckue d)aKTopbl TMNOKCUU U UX POJib
B OLLeHKe (I)YHKI.I,MOH&J'II:HOFO COCTOAHUA Nnoja

0.B. PoxpectaeHcKan', A.A. Kokas? 3, B.®. Bexenaps'

" Nepaeiit CaHkT-MNeTepbyprcxuii rocynapcTBeHHbI MEAMLUMHCKUIA YHUBEpCUTeT M. aKaa. W.M. Maenosa, CakT-Metep6ypr, Poccus;
2 PopunbHblil oM N 16, CankT-Tetepbypr, Poccus;
3 TocynapCTBeHHbIi Hay4YHO-WCCNEAOBATENLCKUIA MHCTUTYT NpUKaaHbIx npobnem, CankT-Metepbypr, Poccua

HensmeHHas yacToTa cilyyaeB rMMoKcuM njoga BO BpeMs BepeMeHHOCTV W POfOB OCTaeTcs BeayLuei HepeLLeHHOM npo-
Gr1eMoii COBPeMEHHOIO MPaKTUYECKOro aKylepcTea. [yTeM CBOEBPEMEHHOTO OTCIEXMBAHUA HapyLeHU BYHKUMOHANBHOTO
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He 103BONSIOT BbLIABNATL KOMMEHCATOPHO-MPUCMOCODMTENBHLIE BO3MOXHOCTW NO0AA, HE BEQYT K YrNybneHHOMY NOHUMaHUio
naTouU3NON0Or14ecKUX OCHOB [@HHOTO COCTOSHUA W BHeApeHWKo Tepanuu. Llenbto 063opa ctanu 0bobLeHne coBpeMEHHbIX
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Despite the existing methods for diagnosing the func-
tional state of the fetus during childbirth, one of the global
problems of modern obstetrics is, on the one hand, the con-
stant incidence of newborns with impaired functional state,
and on the other hand, an increasing number of surgical
interventions during childbirth, which are sometimes unrea-
sonable [1].

Childbirth is a physiological process, however, both
the mother and the fetus experience stress on the verge of
their compensatory and adaptive capabilities, and a favorable
outcome for childbirth depends largely on the successful
implementation of compensatory and adaptive mechanisms
in both the fetus and the mother [2].

In the current stage of medicine development, objectively
assessing the functional state of the fetus by one diagnos-
tic method is not possible. To establish the diagnosis of
an impaired functional state of the fetus, combinations of
various groups of methods are used. However, the pathoge-
netic mechanisms of compensatory and adaptive reactions in
the fetus have been little studied and are described mainly in
experimental models.

In clinical practice, such methods for diagnosing the func-
tional state of the fetus as auscultation of fetal heart tones,
visual assessment of the nature of the amniotic fluid,
electrocardiography, and cardiotocography of the fetus are
used. They are well-studied and successfully used in clini-
cal practice. However, the data on their use is controversial
and contradictory [3]. Modern principles of providing quali-
fied medical care imply a much more objective (careful) ap-
proach to pathological processes and the formation of clearer
algorithms to reduce the level of perinatal complications.
One of the possible ways is expanding the knowledge about
the pathogenetic mechanisms of compensatory and adap-
tive reactions in the fetus and, consequently, to identify new
markers that have diagnostic and prognostic value.

The earliest example of this approach was the intro-
duction of the Saling test in 1962. However, the method
has significant drawbacks (i.e., invasiveness and the in-
ability to determine the nature of acidosis). Neonatal com-
plications (e.g., impaired neurological development and
end-organ damage) are associated with metabolic rather
than respiratory acidosis [4, 5], which led to the study of
lactate. Several authors found a positive correlation be-
tween the duration of stage 2 of labor, lactate level in
the umbilical cord blood of a newborn, and perinatal out-
come [6]. Other researchers concluded that the lactate
level determination is more appropriate than the pH value
in the blood of the fetal head [7]. However, some studies
revealed that the combination of these two methods in
clinical practice, despite the high sensitivity and specificity,
is not recommended due to the increase in unreasonable
surgical interventions [8]. Only a few works describe and
correlate the labor stage and the fetus position concerning
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the planes of the small pelvis during the Saling test or lac-
tate measurement [8-10].

The generally accepted upper limit of normal lactate
levels is 4.8 mmol/L, which is supported by studies using
the LactateProTM analyzer. The LactateProTM analyzer was
initially developed for testing athletes. The indicators obtained
using other portable devices may differ, and the reference
values in the manuals are indicated without considering
the lactate analyzer type [7, 11].

Most fetal lactate is formed during stage 2 of labor [7].
In the work by Wiberg et al. published in 2016, a new range
of physiological lactate levels in the blood of the fetal head
during stage 2 of labor [1.1 and 5.2 mmol/L (+2 SD)] using
the Lactate ProTM analyzer was proposed [10]. In addition,
the authors note the dependence of the lactate level of
the fetal head blood on the parity of labor, regional methods
of anesthesia, and uterotonic agents (oxytocin). In 2018,
Wiberg et al. assessed the dependence of the lactate level
in the blood of the fetal head, measured in stage 2 of
labor, on the outcome in a child at 4 years old and revealed
an increase in the number of cognitive dysfunctions and fine
motor disorders with an increase in the lactate level at birth
in these children [12].

The point-of-care testing and lactate test strip method
has become attractive. However, the reference values given
in various manuals should be noted to differ depending
on the analyzer used. Moreover, Remneva et al. showed
the feasibility of determining the lactate level in the amniotic
fluid and the lactate—creatinine ratio to accurately determine
the presence of the degree of fetal hypoxia [13]. In the work by
Pogorelova et al., the proteomic composition of amniotic fluid
was analyzed, which established that zinc-a,-glycoprotein
can be recommended as an informative marker of fetal
growth retardation [14].

Loukovaara et al. found that erythropoietin and S100B
obtained by sampling amniotic fluid can also be fetal hypoxia
markers [15]. In subsequent studies, Summanen et al.
concluded that S100B and erythropoietin in neonatal serum
are not reliable birth asphyxia biomarkers. The authors
studied the role of copeptin in neonatal cord blood serum
and indicated its potential as a biomarker for acute birth
asphyxia and neonatal distress. Thus, correlations of this
parameter with excess base and pH of the umbilical artery
were revealed. In addition, umbilical cord serum copeptin
levels were significantly higher in children born vaginally and
increased with labor duration [16].

Many authors point out that hypoxia induces ischemia
and myocardial necrosis, and alteration markers of
the target organ can then become biochemical hypoxia
factors [17, 18]. One such marker is troponin. Stefanovic
et al. revealed that elevated troponin level in the amniotic
fluid is an independent predictor of fetal respiratory distress
syndrome development [19]. The average cardiac troponin T
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level in the venous blood of children 4 h after birth was
later established to be significantly higher in the group of
patients with asphyxia, and the method itself had high
sensitivity (83.9%) and specificity (96.6%). In addition,
the level of the marker correlated positively with an increase
in the degree of hypoxic—ischemic encephalopathy [20].
However, other researchers note an increase in the troponin
level in the umbilical cord arterial blood plasma in premature
newborns with congenital malformations of the fetal heart
without impairment of its function, which indicates the need
to study the threshold values and the role of this protein as
a fetal hypoxia marker in more detail [21].

In 2019, Wang et al. demonstrated the relationship between
the levels of serum protein S 1008, C-reactive protein, and
cystatin C, as well as troponin | (cTnl), cord blood creatine
kinase MB, and CK MB isoforms with the neonatal hypoxic—
ischemic encephalopathy development [22]. As a clinical
example, the case of an increase in the cTnl level in
the venous blood of a pregnant woman, described by Turrini
et al., was presented. Extragenital diseases (pericarditis,
myocarditis, pulmonary embolism, kidney disease, and so
on) that cause an increase in the value of this indicator were
ruled out, and an increase in the cTnl level was concluded to
may be of intrauterine origin [23]. Fleming et al. established
that the increase in cTnl level was due to myofibrillar damage
caused by hypertension [24]. However, other authors did not
register an increase in the cTnl level in venous blood plasma
in patients with preeclampsia/eclampsia [25]. The authors
of the described clinical case believe that the increase in
the troponin level is associated with severe fetal hypoxia. In
their report, the researchers mention that the conventional
wisdom is that cTnl does not cross the placenta. However,
in this case, the authors believe that deep damage to
the placenta could be associated with the entry of fetal
cTnl into the mother’s blood. The argument supporting
the intrauterine origin of the molecule was due to a decrease
in the cTnl level during fetal death and its normalization after
pregnancy termination.

Despite the advantages of the aforementioned studies,
one of the main disadvantages of these methods is their
injury rate (if blood is taken from the fetus during delivery)
or their significance is only for retrospective assessment
of the fetus state (in the case of cord blood sampling after
the birth of the fetus).

In 2013, Whitehead et al. published works and revealed
a hypoxia-induced microRNA, the level of which increased
during labor in maternal blood during acute fetal hypoxia.
Simultaneously, a correlation was demonstrated with
the fetal acidemia level at birth, as well as hemodynamic
disorders in the fetal vessels during Dopplerometry [22, 26].
In addition to the advantages related to the sensitivity and
specificity of the method, an important role is played by
the possibility of prospective diagnostics and relatively low
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invasiveness [27]. In 2015, Looney et al. reported a signifi-
cant decrease in the microRNA (hsa-miR-374a) expression
in cord blood in children with perinatal asphyxia and neo-
natal hypoxic—ischemic encephalopathy [28]. Other authors
in a clinical study in newborns with hypoxic—ischemic en-
cephalopathy studied the miRNA-21 and HIF-1a expressions.
Their levels were higher in the blood serum of children with
hypoxic—ischemic encephalopathy compared with the chil-
dren in the control group [29]. In a clinical review of the role
of miRNAs in the development of hypoxic—ischemic ence-
phalopathy in newborns, Ponnusamy attempted to associate
all known changes that occur at the cellular level, both in
physiological and pathophysiological processes registered in
hypoxic—ischemic encephalopathy in the developing brain of
a newborn. The authors believe that further study of the issue
may pave the way for improving the diagnostics of traumatic
brain injury in newborns and the search for effective neuro-
protectors [30].

In 2010, van Patot raised the subject of not only diag-
nosing fetal distress but also assessing compensatory ca-
pabilities. Comparing changes in the placenta in puerperas
living at sea level and an altitude of 3,100 m above sea
level, compensatory and adaptive mechanisms are con-
cluded to be activated in the latter. In the placenta, the lev-
els of polyunsaturated fatty acids, phosphocreatine, taurine,
and inositol increase, and the levels of monounsaturated
fatty acids and the ratio of adenosine triphosphate/adeno-
sine diphosphate are lower compared to women living at
the sea level [31].

In the context of damage to target organs, the tissue of
the central nervous system should be mentioned, which is
extremely sensitive to the effects of hypoxia. Compensatory
and adaptive mechanisms in the human fetus are practically
not studied, and attempts to study them are mainly
experimental. Despite the introduction of new technologies
that improve outcomes in newborns with high perinatal
risk, the incidence of perinatal neurological complications
in developed countries is not currently decreasing, and they
constitute a significant part of the range of perinatal cerebral
lesions and significantly affect early childhood morbidity,
disability, and mortality [30, 32].

Hypoxia is one of the leading factors for brain cell dam-
age during ischemia. A decrease in oxygen level impairs
oxidative phosphorylation on the mitochondrial membrane,
uncouples the components of the respiratory chain, the oc-
currence of energy deficiency and acidosis, releases glu-
tamate, and disturbs Ca?* accumulation, which leads to
the activation of free radical processes and is one of the main
causes of neuron death [32-35]. After successful resusci-
tation measures, oxygenation and perfusion of the brain of
the newborn are restored, but then the so-called second-
ary or delayed damage to the central nervous system occurs
without changing the intracellular pH value against the stable
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work of the cardiovascular and respiratory systems, which is
associated with reoxygenation [13, 32, 36].

A promising approach to increase the compensatory and
adaptive capabilities of the nervous system is the activation of
endogenous systems that contribute to the survival of nerve
cells under the action of stress factors and the maintenance
of their functional activity. The use of neurotrophins, such
as glial cell line-derived neurotrophic factor (GDNF), brain-
derived neurotrophic factor (BDNF), and so on, is of great
interest. Ostrova and Avrushchenko in experiments in vivo
showed the ability to synthesize BDNF in the neuronal
population of cerebellar Purkinje cells. The authors
believe that this property is one of the most important
factors that increase the resistance of neurons to death in
the postresuscitation period. This factor may play a role in
the compensatory and adaptive mechanisms of the fetus
during hypoxic injury [37]. In 2016, Mitroshina et al. published
the results of an experiment that studies the effect of GDNF
on the resistance of animals to ischemic brain damage
under conditions of global ischemia, a model of hilateral
carotid artery occlusion. The authors concluded that GDNF
contributes to the survival of animals in cerebral ischemia
simulation and the neurological status normalization in
the postischemic period [33].

In their experimental work, Morozov et al. found that
the levels of BDNF, nerve growth factor NGF, and protein
S-100 significantly decrease in rat brain structures (cortex,
hippocampus, and cerebellum) in early ontogeny after
prenatal hypoxia [39]. Subsequently, these authors showed
the effect of prenatal hypoxia on the levels of BDNF and
neurospecific enolase (NSE) in the hippocampus and blood
serum of rats on days 5, 10, and 30 of life. Within the indicated
periods, the BDNF and NSE levels in the hippocampus of
rats in the group of animals exposed to hypoxia decreased.
Simultaneously, the level of these factors in the blood of
animals increased. The authors concluded that prenatal
hypoxia interferes with the performance of the functions
of these proteins, affect the formation of synaptic plasticity
processes due to the lag in the development of synapses
and disruption of the integrity of neurons, and fail in their
development both in early ontogenesis and later in the life of
animals [40]. In 2020, Shchelchkova et al. published a study
where they showed that chronic hypobaric hypoxia in
pregnant female mice in trimesters 1 and 3 led to a significant
decrease in the level of neurotrophic factors BDNF and
GDNF in blood plasma [41]. GDNF maintains the efficiency
of the respiratory chain, the functional state of mitochondria,
contributing to the adaptation of cells to the effects of
ischemia. One of the mechanisms of the protective GDNF
action can be a decrease in the number of free radicals
formed during ischemia [42—44]. Several studies have found
that mesenchymal stem cells exert a neuroprotective effect
through complex mechanisms (e.g., secretion of neurotrophic
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factors, angiogenesis, apoptosis inhibition, and immune
system modulation) [45-48].

An experimental study by Lee et al. was presented as
an illustration [49]. The authors suggested that neurotrophic
factors released into the medium by stem cells can confer re-
generative abilities on hypoxia-damaged organotypic cultures
of hippocampal slices. The hippocampus was revealed to be
less damaged after growing in a conditioned medium than
after growing in a Gwalior medium [consisting of 25% Hank's
balanced salt solution (GibcoBRL/Life Technologies, Eugene,
OR, USA), 25% heat-inactivated horse serum (Hyclone, Logan,
UT, USA), 50% Eagle medium (BME, GibcoBRL/Life Technolo-
gies), 6.5 mg/mL glucose and 200 mM glutamax | (GibcoBRL/
Life Technologies)]. Moreover, stem cells can express va-
rious neurotrophic and growth factors. The study authors
state that NGF, GDNF, and the vascular growth factor VEGF
act as neuroprotectors under hypoxic injury conditions [49].

Other studies have confirmed data on the mechanisms
of the neuroprotective effect of mesenchymal stem cells
(i.e., the secretion of neurotrophins, including brain and
glial neurotrophic factors [50, 51]) as another way to reduce
the pathogenic effect of hypoxic—ischemic damage, which was
described by Sheng et al. in 2018 [52]. The results of an in vitro
study demonstrated that prolonged hypoxia downregulates
BDNF-TrkB signaling, leading to an increase in the TNFa level
in the cerebral cortex, which induces neuroinflammation and
neurotoxicity, while activation of the delta-opioid receptor
regulates BDNF-TrkB signaling, reducing the TNFa level in
the cerebral cortex. Upon activation of 6-opioid receptors,
the expression of astrocytic BDNF, NGF, and GDNF increases,
which leads to an increase in cell growth and improves their
functioning and phenotypic development, which ultimately
plays a decisive role in protecting the brain against hypoxic/
ischemic encephalopathy [52].

In in vitro studies, the introduction of neurotrophic
factors into the culture medium under conditions of ischemic
damage promotes the preservation and restoration of
the functional activity of neural networks [53, 54]. Recently,
in an experimental study, the antihypoxic effect of GDNF was
shown when administered intranasally under the influence
of acute hypobaric hypoxia [55]. GDNF has pronounced
neuroprotective properties. Its prophylactic use preserves cell
viability, spontaneous bioelectrical activity, and morphological
and functional structures of neural networks of primary
hippocampal cultures after hypoxic damage. GDNF was also
demonstrated to be involved in maintaining the level of AMPA
receptors containing the GluR2 subunit, which may be the key
mechanism of the neuroprotective GDNF action [56]. Ikeda et
al. published the results of experiments simulating ischemic/
hypoxic brain injury in 7-day-old rats. The extent of damage
was significantly attenuated with intracerebral GDNF injection
(2 or 4 pg) within 30 min after stroke. The authors note that
higher GDNF expression and its mRNA in the developing
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brain may be one of the factors responsible for the relative
resistance to ischemia in the fetus and newborn in contrast
to the adult brain [38].

Experimental studies have become the basis for studying
the role of neurotrophic factors in clinical practice. In 2006,
Golosnaya and Kotiy found that a decrease in the BDNF and
VEGF levels in the blood serum of newborns to trace values
in the first day of life and the first week of life, respectively,
is prognostically unfavorable. An increase in the levels of
these neurotrophins by 1.5-3 times indicates good adaptive
capabilities of the nervous system. The study noted that
a direct correlation was revealed, in preeclampsia, with a low
VEGF level by the first day of a newborn’s life, which indicates
a high risk of perinatal hypoxic brain damage in this group
of patients [58]. Shchelchkova et al. found no significant
differences in the GDNF and NSE levels in the venous
umbilical cord blood plasma of newborns during physiological
labor and labor complicated by hypoxia. The authors attribute
this to the activation of compensatory mechanisms during
childbirth. However, a significant decrease in the BDNF level
was registered in the group of newborns with complicated
delivery. According to researchers, this indicates a low
degree of brain protection against hypoxic damage, which
can lead to the development of degenerative processes in
the brain tissues of newborns [57]. According to Morozova
et al., under conditions of chronic hypoxia in placental
insufficiency, the genetic program for the development of
all functional systems of the fetal body is disrupted, which
complicates postnatal adaptation and programs the risk of
adverse consequences, including the deep disturbances in
brain homeostasis. The authors emphasize that determining
not only the presence and degree of damage but also
the possibility of compensatory mechanisms is important
for a favorable perinatal prognosis. In 2019, results were
published in which full-term newborns with intrauterine
growth retardation of degrees 2-3 had an increased NSE
level in the umbilical blood serum, while the BDNF level was
low. The data obtained indicate brain damage combined with
the lack of adequate compensatory capabilities. Under these
conditions, the degree of damage to neuronal structures
increases with an increase in the gestation period [59]. In the
process of clinical follow-up, in 2020, Shchelchkova et al.
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