Prospects for the use of direct antioxidant ionol (2,6-di-tert-butyl-4-methylphenol) for conservative treatment of cataract

Cover Page


Cite item

Full Text

Abstract

Aim. To estimate the effect of ionol (2,6-di-teRt-butyl-4-methylphenol) on the dynamics of lens opacities and its free-radical status in experimental cataract.

Methods. Cataract was induced by a single injection of diquat dibromide solution into the vitreous body of 80 rabbits (160 eyes) at a dose of 600 nmol, 5 rabbits were included into the control intact group. Animals with induced cataract were divided into 4 groups each including 20 animals (40 eyes) who were treated with TID instillation in conjunctival cavity of: olive oil (control), «Oftan Catachrom», solution of α-tocopherol acetate, 2.2% ionol oil solution. Treatment was started on day 7. The duration of the experiment was 56 days. Dynamics of lens opacities was assessed by the following criteria: progress, stabilization and regression. In the lens homogenate the concentration of malonic dialdehyde, level of non-protein thiol (SH) groups, activity of glutathione peroxidase and glutathione transferase were determined. The results were analyzed by ANOVA, paired comparison was performed by the Newman-Keysl criterion.

Results. Application of ionol reduced malonic dialdehyde concentration in the lens compared to the series without treatment on days 14, 28, 42 and 56 (by 74.3, 90.0, 89.3, and 80.2%, p <0.05). Use of ionol prevented the depletion of antioxidant enzymes. On day 56, glutathione peroxidase activity exceeded control by more than 400%, and glutathione transferase - by 983.4% (p <0.05). The content of SH-groups by day 56 exceeded the control by 5 times. «Oftan Catachrom» and tocopherol showed no significant effect on free-radical status of the lens. With ionol, marked anti-cataract effect was registered. By day 28, stabilization of the process was noted in 44.3% of cases, and in 11.3% of cases the regression of lens opacities started. Further on, this trend persisted and by the end of the study, in half of the cases regression of lens opacities was noted, and in one third - their stabilization. «Oftan Catachrom» treatment stabilized the process of cataract formation only in 33%, and regression was not observed. Tocopherol did not have a significant effect on the cataractogenesis process.

Conclusion. The received results testify to the pathogenetic validity of the use of the direct antioxidant ionol for the treatment of cataract.

About the authors

A V Kolesnikov

Ryazan State Medical University

Author for correspondence.
Email: kolldoc@mail.ru
Ryazan, Russia

References

  1. Зенков Н.К., Кандалинцева Н.В., Ланкин В.З. и др. Фенольные биоантиоксиданты. Новосибирск: СО РАМН. 2003; 328 с.
  2. Хавинсон В.Х., Баринов В.А., Арутюнян А.В. и др. Свободнорадикальное окисление и старение. СПб.: Наука. 2003; 327 с.
  3. Бабижаев М.А., Деев А.М. Свободнорадикальное окисление липидов и тиоловых групп при катарактогенезе. Биофизика. 1986; 31 (1): 109-114.
  4. Багиров Н.А. Современные проблемы катарактогенеза. Офтальмол. ж. 2000; (6): 98-102.
  5. Шабалин В.Н., Шатохина С.Н., Девяткин А.А. и др. Морфология жидких сред глаза (новая теория инволютивного катарактогенеза). Монография. М.: Медицина. 2004; 244 с.
  6. Horakova L., Ondrejickova O., Bachrata K. et al. Preventive effect of several antioxidants after oxidative stress on rat brain homogenates. Gen. Physiol. Biophys. 2000; 19: 195-205. PMID: 11156442.
  7. Anderson R.E., Kretzer F.L., Rapp L.M. Free radicals and ocular disease. Adv. Exp. Med. Biol. 1994; 366: 73-86. doi: 10.1007/978-1-4615-1833-4_6.
  8. Леус Н.Ф. О пусковых механизмах катарактогенеза. Офтальмол. ж. 1985; (7): 430-434.
  9. Метелицына И.П., Коломийчук С.Г., Кравченко Л.И. и др. Концентрация витаминов-антиоксидантов и субстратов НАД-зависимых дегидрогеназных систем в крови больных возрастной катарактой. Ж. АМН Украины. 1996; 2 (4): 696-703.
  10. Patel R.P., Boersma B.J., Crawford J.H. et al. Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Radical Biol. Med. 2001; 31: 1570-1581. doi: 10.1016/S0891-5849(01)00737-7.
  11. Pau H., Graf P., Sies H. Glutathione levels in human lens: Regional distribution in different forms of cataract. Exp. Eye Res. 1990; 50: 17-20. doi: 10.1016/0014-4835(90)90005-F.
  12. Мальцев Э.В., Багиров Н.А., Аль Шариф Ясир. Перспективы развития медикаментозного лечения катаракт. Офтальмол. ж. 2002; (2): 46-49.
  13. Зарудий Ф.С. 2,6-Ди-третбутил-4-метилфенол (дибутинол, ионол, тонарол) классический антиоксидант. Химико-фармацевт. ж. 2001; 35 (3): 42-48.
  14. Esterbauer H., Puhl H., Dieber-Rotheneder M. et al. Effect of antioxidants on oxidative modification of LDL. Ann. Med. 1991; 23 (5): 573-581. doi: 10.3109/07853899109150520.
  15. Bhuyan K.C., Bhuyan D.C., Podos S.M. Free radical enhancer xenobiotic is an inducer of cataract in rabbit. Free Radic. Res. Commun. 1991; 12-13 (2): 12-13. doi: 10.3109/10715769109145837.
  16. Колесников А.В. Подбор эффективной антиоксидантной дозы ионола для ткани хрусталика при местном инстилляционном введении его масляного раствора. Рос. мед.-биол. вестн. им. И.П. Павлова. 2006; (2): 46-49.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2017 Kolesnikov A.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies