

Передовые исследования в математических и технических науках. Методика и практика преподавания физико-математических и технических дисциплин в школе и вузе

УДК 378.016

https://doi.org/10.36906/KSP-2021/65

Воронина Л.В.

ORCID: 0000-0003-1038-8048, д-р пед. наук Уральский государственный педагогический университет г. Екатеринбург, Россия

Озерова Т.С.

ORCID: 0000-0002-9056-1615 Уральский государственный горный университет г. Екатеринбург, Россия

СРЕДСТВА ПОВЫШЕНИЯ КАЧЕСТВА МАТЕМАТИЧЕСКОЙ ПОДГОТОВКИ БУДУЩИХ ГОРНЫХ ИНЖЕНЕРОВ

Аннотация. В статье предлагается фрагмент организации практического занятия для студентов специальности 130400 Горное дело (специализация Горнопромышленная экология) по теме «Дифференциальные уравнения первого порядка» с применением профессионально-ориентированной задачи с целью формирования навыков критического мышления для повышения качества математической подготовки будущих горных инженеров.

Ключевые слова: математическая подготовка; критическое мышление; горные инженеры; профессионально-ориентированные задачи; дифференциальные уравнения.

Voronina L.V.

ORCID: 0000-0003-1038-8048, Ph.D.

Ural State Pedagogical University, Yekaterinburg, Russia

Ozerova T.S.

ORCID: 0000-0002-9056-1615

Ural State Mining University, Yekaterinburg, Russia

MEANS OF IMPROVING THE QUALITY OF MATHEMATICAL TRAINING FOR FUTURE MINING ENGINEERS

Abstract. The article proposes a fragment of organizing a practical lesson for students of the specialty 130400 Mining (specialization Mining ecology) on the topic «Differential equations of the first order» using a professionally oriented problem in order to form critical thinking skills to improve the quality of mathematical training of future mining engineers.

Key words: mathematical training; critical thinking; mining engineers; professionally oriented tasks; differential equations.

Математика одна из немногих наук, которая принимает непосредственное участие в развитии и ускорении научно-технического прогресса. «Глубина идей, заложенных в тех или иных математических понятиях, позволяет найти им приложение в различных сферах» [0, с. 70]. В вузе студенты начинают изучать математику с первого курса, что закладывает базу для последующего успешного усвоения общеобразовательных, специальных дисциплин, а также умений, с помощью которых будущий выпускник сможет находить оптимальные решения проблемных задач прикладного характера. Поэтому усиление математической подготовки будущих горных инженеров обусловливает успешность и эффективность их деятельности. Математический склад мышления становится необходимым для специалистов горной промышленности.

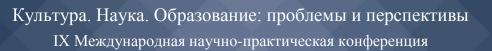
Как известно, профессиональные навыки студентов развиваются при выполнении ими заданий, направленных на моделирование ситуаций, приближенных к профессиональной деятельности, связанных с оценкой информации и действий, с проверкой гипотез, с пониманием законов вероятности и статистики, с процессом принятия решений, что формирует помимо математического — критическое мышление. Именно формирование навыков критического мышления повышает в том числе и качество математической подготовки студентов горного вуза.

Критическое мышление — это «сложный мыслительный процесс, позволяющий осуществлять оценочно — рефлексивную деятельность, направленную на оптимальное решение проблемной ситуации при ее всестороннем критическом анализе с помощью знаний, опирающихся на субъектный опыт и с помощью аргументированного обоснования истинности выдвигаемых гипотез, построенных на законах логики для последующей всесторонней оценки последствий возможных решений» [1].

Анализ учебных пособий, посвященных изучению математики студентами горных вузов, показал, что они (в соответствии с ФГОС ВО 3++) содержат разделы, направленные на формирование, изучение основных понятий и методов, прописанных в рабочих программах дисциплины «Математика». Задачи, приведенные в учебниках, в основном стандартны по своему содержанию, решаются они по описанному преподавателем алгоритму, в них, по сути, отсутствует цель по формированию у студентов умения критически оценивать ход решения и осуществлять проверку полученного результата. Поэтому, в качестве средств повышения качества математической подготовки, а также формирования у горных инженеров критического мышления предлагаем использовать профессионально-ориентированные задачи и написание эссе.

Под профессионально-ориентированной задачей понимается «некоторая абстрактная модель реальной проблемной ситуации прикладного характера в профессиональной сфере деятельности, сформулированная в вербальной, знаковой или образно-графической форме и

решаемая математическими средствами» [4, с. 11]. В процессе решения данных задач студенты осваивают профессиональную лексику, специфические обозначения, моделируют будущую профессиональную деятельность.


С точки зрения формирования критического мышления решение профессиональноориентированных задач направлено на:

- использование при составлении математической модели имеющегося у студентов субъектного опыта и в процессе решения задач обогащение его (т. к. в них находится реальная информация);
- установление междисциплинарных связей, применяя операции анализа, сравнения, обобщения;
- использование при решении задач всестороннего критического анализа, с помощью которого отрабатывается исследовательская деятельность студентов (в условии задачи может содержаться избыточная информация или, наоборот, для поиска недостающей профессионально-значимой информации придётся изучать дополнительную литературу);
- отработку навыков прогнозирования при изменении некоторых параметров, данных в задаче;
- нахождение общего закона рассматриваемого процесса и проведение всестороннего анализа полученного решения на основе выводов, сделанных аналитическим путем с последующей проверкой (если это возможно) графическим методом;
- создание условий для самореализации в дальнейшей профессиональной деятельности.
 Опишем этапы решения профессионально-ориентированных задач в контексте формирования критического мышления:
- 1. Постановка задачи: понимание проблемной ситуации; выделение ее базовых составляющих.
- 2. Сбор необходимых данных: критический анализ ситуации; умение добывать, сортировать, оценивать информацию.
- 3. Построение математической модели: наложение новой информации на жизненный опыт; рациональное преобразование построенной модели для дальнейшего перехода к математическому решению.
- 4. Решение задачи: составление и оценка вариантов решения по уже изученному алгоритму; аргументированная защита решений.
- 5. Анализ полученных результатов: осмысление собственных действий (правильные или неправильные); выбор оптимального решения; фиксация затруднений.

Приведем пример профессионально-ориентированной задачи, используемой при изучении темы «Дифференциальные уравнения» для формирования критического мышления у студентов специальности 130400 Горное дело (специализация Горнопромышленная экология).

Задача. При проведении горных работ карьерные воды загрязняются различными механическими частицами, химическими соединениями, взвешенными частицами, тем самым

наносят ущерб окружающей среде. Возникает задача: определить эффективность очистки карьерных вод от взвешенных частиц [2]. При описании решения данной задачи курсивом будем выделять позиции, связанные с формированием у студентов критического мышления.

- **1. Постановка задачи.** На начальном этапе *студентам необходимо выявить проблему*, требующую решения: как определить эффективность очистки карьерных вод от взвешенных частиц? Чем характеризуется эффективность очистки карьерных вод?
- **2.** Сбор необходимых данных. Для того, чтобы студентам было проще разобраться в условии задачи и найти правильный путь решения преподаватель предлагает всем вместе заполнить кластер с основным понятием «очистка карьерных вод». При заполнении кластера студенты должны ответить на вопросы: «От чего зависит очистка карьерных вод?», «Каков механизм очистки карьерных вод?». Вид кластера до и после заполнения представлен на рисунке (а, б).

На основе *анализа условий задачи и заполненного кластера* студенты вводят следующие обозначения: ΔS — длина фильтрующего массива, α — коэффициент фильтрации; C — изначальная концентрация веществ в сточной воде; $C_{\text{оч}}$ — концентрация загрязненного вещества на выходе, тогда C — $C_{\text{оч}}$ = ΔC — изменение концентрации взвешенных частиц.

а) кластер до заполнения:

б) кластер после заполнения:

Рис. Кластер «Очистка карьерных вод»

3. Построение математической модели. Так как дисциплина «Геоэкология» изучается на третьем курсе, а данная задача решается на втором, то для поиска недостающей профессионально-значимой информации студенты изучают дополнительную литературу, в которой находят данные о том, что показателем качества воды является значение концентрации в ней вредных веществ и используют правило: при очистке сточных вод через фильтрующие массивы по длине потока ΔS происходит изменение концентрации взвешенных частиц ΔC пропорционально имеющемуся уровню концентрации C и выражают это формулой:

$$\frac{\Delta C}{C} = -\alpha \cdot \Delta S.$$

Культура. Наука. Образование: проблемы и перспективы

IX Международная научно-практическая конференция

Студенты рационально преобразовывают построенную модель (для дальнейшего перехода к дифференциальному уравнению уравнению): $\frac{\Delta C}{\Delta S} = -\alpha \cdot C$

Основываясь на знаниях, полученных в темах «Предел функции» и «Производная функции» студенты предлагают перейти к пределу при $\Delta S \to 0$ и получают дифференциальное уравнение $\frac{d\mathcal{C}}{dS} = -\alpha \cdot \mathcal{C}$.

4. Решение задачи. Студенты определяют, что полученное уравнение является дифференциальным уравнением первого порядка с разделяющимися переменными относительно переменных C и S, решение которого находится по уже изученному алгоритму.

Студенты самостоятельно записывают условия, которые задают начальную концентрацию загрязнения карьерных вод: $C(0) = C_0$.

Окончательно студенты получают решение задачи в виде функции $C(S) = C_0 \cdot e^{-\alpha S}$.

Преподаватель предлагает студентам в качестве характеристики эффективности очистки карьерных вод взять отношение концентрации на входе и на выходе из массива длиной S и обозначить эту величину через $K_{\rm ad}$.

Студенты приводят уравнение к виду: $\frac{c_0}{c(s)} = e^{\alpha s}$, делают замену $\frac{c_0}{c(s)} = K_{\ni \varphi}$ и получают: $K_{\ni \varphi} = e^{\alpha s}$.

5. Анализ полученных результатов преподаватель предлагает ввести конкретные числовые значения величин α , S_1 , S_2 , S_3 и вычислить показатели эффективности карьерных вод.

Преподаватель и студенты вводят: $\alpha=0$, 02 м $^{-1}$, $S_1=100$ м, $S_2=200$ м.

Студенты находят:

$$K_{9\phi 1} = e^{0.02 \cdot 100} = 7.4; K_{9\phi 2} = e^{0.02 \cdot 200} = 54.7.$$

Студенты делают выводы, что массив длиной 100 м очищает карьерные воды в 7,4 раза; 200 м - в 54,7 раза.

Прямую зависимость увеличения показателя эффективности очистки карьерных вод от увеличения длины массива (для введенных условий) студенты также видят при построении графика функции $K_{ab} = e^{0.02S}$.

В конце решения задачи студентам предлагается заполнить карту самоанализа.

Карта самоанализа

Уважаемые студенты! В предложенной таблице зафиксируйте затруднения, с которыми вы столкнулись при решении данной задачи. Во втором столбце поставьте галочку напротив тех позиций, которые вызвали затруднения. При возникновении затруднений, непрописанных в таблице, впишите их самостоятельно в пустые строки.

При отборе материала для *формирования критического мышления* будущих горных инженеров руководствуемся следующими принципами: профессиональной направленности, творчества, опоры на субъектный опыт студентов, деятельности, рефлексии.

Таблица

Таблица для фиксации затруднений

Затруднения	Фиксация
	затруднений
Построение математической модели задачи	
На основе математической модели составление дифференциального уравнения	
Определение типа дифференциального уравнения	
Выбор соответствующего метода решения	
Самостоятельное введение начальных условий для дальнейшего решения	
задачи Коши	
Проведение анализа полученного результата	
Оценка правильности решения задачи с помощью построения графика,	
правильность построения самого графика	
Другие затруднения	_

Опишем данные принципы в рамках представленной выше профессионально-ориентированной задачи:

- принцип профессиональной направленности обеспечивается наличием информации о коэффициенте фильтрации, концентрации взвешенных частиц на входе и на выходе из массива;
- принципы творчества и опоры на субъектный опыт проявляются в том, что данная задача достаточно нестандартна по своему содержанию, наполнена новизной, отличается от типовых задач, представленных в сборниках по высшей математике при изучении темы «Дифференциальные уравнения», но с помощью творческого подхода решается с опорой на применение знаний, полученных в темах «Предел функции», «Производная функции» и на основе уже известного студентам способа решения дифференциальных уравнений первого порядка с разделяющимися переменными;
- реализация *принципа деятельности* происходит на всех этапах решения задачи: студент должен четко описать систему переменных, от которых зависит качество решения, выявить и проанализировать условия, которым должны удовлетворять решения, наконец, формализовать задачу в виде математической модели и решить ее;
- принцип рефлексии реализуется при самооценке, самоконтроле, которые являются необходимыми условиями описанного выше принципа деятельности и обеспечивается в процессе заполнения карты самоанализа.

В качестве еще одного средства повышения качества математической подготовки, а также формирования критического мышления предлагается **написание эссе**. Как известно, написание эссе предполагает наличие некоторого багажа знаний, способностей к анализу, синтезу, умозаключениям, наличие эрудиции. Предложенные темы для эссе могут быть такими: «Зачем будущим горным инженерам нужно изучать тему «Дифференциальные уравнения»» или «Дифференциальные уравнения в геологии». К этой работе преподаватель выдвигает ряд требований: присутствие профессиональной терминологии; обобщение

структуры изученного материала; конкретные примеры того, где в будущей профессиональной деятельности возможно использование дифференциальных уравнений.

В результате написания такого эссе произойдет закрепление пройденного раздела, включение его в субъектный опыт студентов, осознание необходимости в саморазвитии и как следствие развитие критического мышления.

Таким образом, в результате решения профессионально-ориентированных задач, написания эссе, студенты наглядно видят каким образом математические методы можно применить к задачам из смежных дисциплин. Следствием этого является не только формирование так важного в их будущей профессиональной деятельности критического мышления, но и повышение качества математической подготовки будущих горных инженеров.

Литература

- 1. Воронина Л.В., Озерова Т.С. Кейс-задачи как средство формирования критического мышления у будущих горных инженеров в процессе обучения математике // Информационно-коммуникационные технологии в педагогическом образовании. 2021. № 4(73). С. 69–76.
- 2. Гоголин В.А., Ермакова И.А. Основы математики применительно к горному делу. Кемерово: КузГТУ, 2018. 112 с.
- 3. Иляшенко Л.К., Миннебаева, Э.И. Роль математики в подготовке будущих инженеров по нефтегазовому профилю // Наука и современность. 2003. № 3. С. 69–73.
- 4. Скоробогатова Н.В. Наглядное моделирование профессионально-ориентированных математических задач в обучении математике студентов инженерных направлений технических вузов: Дис...канд. пед. наук. Ярославль, 2006. 183 с.

© Воронина Л.В., Озерова Т.С., 2021

