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THE DIOPHANTINE EQUATION FROM THE EYE OF PHYSICIST 

 

Abstract. A Diophantine equation is an equation with integer coefficients, the solutions of 

which must be found among integers. The equation is named after the mathematician Diophantus of 

Alexandria (III century). Despite its simplicity, a Diophantine equation may have a nontrivial solution 

(several solutions) or has no solution at all. Fermat's Last Theorem and Pythagorean Theorem are the 

Diophantine equations too. In 1900 The German mathematician David Hilbert formulated the Tenth 

problem. After 70 years, the answer turned out to be negative: there is no general algorithm. 

Nevertheless, for some cases, schoolchildren can understand whether a Diophantine equation is 

solvable without resorting to calculations, relying on the methods of physics, symmetry and set 

theory.  
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ДИОФАНТОВО УРАВНЕНИЕ ГЛАЗАМИ ФИЗИКА  

 

Аннотация. Диофантово уравнение – это уравнение с целыми коэффициентами, 

решения которого следует также искать в целых числах. Уравнение названо в честь 

математика Диофанта Александрийского (III век). Несмотря на свою простоту, такое 

уравнение может иметь нетривиальное решение (несколько решений) или вообще не иметь 

решения. Примеры таких уравнений: теорема Пифагора, Великая теорема Ферма. В 1900 году 

немецкий математик Давид Гильберт сформулировал «Десятую проблему», позволяющую 

сразу понять, разрешимо ли диофантово уравнение? Спустя 70 лет ответ оказался 

отрицательным: общего алгоритма не существует. Тем не менее, в ряде случаев школьники 
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могут понять, разрешимо ли диофантово уравнение, не прибегая к вычислениям, опираясь на 

методы физики, симметрии и теории множеств. 

Ключевые слова: Диофантово уравнение; Ферма; физика; симметрия; гиперкуб; 

бинарные отношения. 

 

Fermat's Last Theorem was formulated by Pierre de Fermat in 1672, it states that the 

Diophantine equation:  

an + bn = cn      (1) 

has no solutions in integers, except for zero values, for n > 2. The case degree of two is known in the 

school course under the name theorem Pythagoras. Euler in 1770 proved Theorem (1) for n=3, 

Dirichlet and Legendre in 1825 - for n = 5, Lame - for n = 7. In 1994 Prof. Princeton University 

Andrew Wiles proved (1), for all n, but this proof, contains over one hundred and forty pages, 

understandable only to high qualified specialists in the field of number theory [2]. But there is also a 

brief proof to the contrary:  

If a triple of integers an + bn ≡ cn exists, then it can map three nested integer edges hypercubes 

into each other (the centers of the nested hypercubes are aligned with the origin coordinates) while 

the volume of the small hypercube an is equal to the difference between the volumes cn - bn. Here the 

identity sign ‘≡’ means independence from the scale and set partition of our construction, i.e. a triple 

of integers in meters, decimeters, centimeters, millimeters. It is easy to prove that the condition for 

the equality of volumes and the properties of the central symmetry, continuity of the formed 

constuction mutually exclude each other. To understand this let’s mentally move the layer from set 

of points in space described by the formula cn - bn into a small cube an and vice-versa.  

 

 

 

Picture 1. The figure of one layer (left) and set of layers in the octant (+, +, -) 

 

Here below a layer is defined as a set of points of a multidimensional spaces of real numbers 

Rn between successively following hypercubes with integer edges. The layer, like the whole n-

dimensional figure, consists of elementary hypercubes 1n in whole number space denoted as Zn. 

The designed construction of three nested hypercubes can be filled of layers step-by-step from the 

periphery to the center and vise-versa like building a frame house. This is the method used Euclid’s 
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Elements [3]. A layer from the c-Large hypercube must fit an integer number of times in the a-Small 

hypercube (due to the excess of large over small - two or more times), otherwise the central symmetry 

of the construction or the continuity of the ordered layers will be lost. 

Here understanding the structure of the layer gives the following formula  

   (2) 

The formula above is convenient to use for figure three inscribed in each other hypercubes, 

“origin of coordinate placed in vertices”. Another view is “origin of coordinate placed in centers of 

the hypercubes”. Both geometrical constructions are transformed into each other due to reflections 

from planes perpendicular to each of the n coordinate axes, or by cutting the figure and scaling. 

Each layer of hypercube have elements of dimensions n-1, n-2, ... 1 (hyper)faces and edges 

such elements is described by formula ik1n-k  - i.e. cuboid. “At the destination” volumes of elements 

of each dimension must be identically equal the volume of the corresponding moved element, by 

virtue of the principle incompressibility of the volume of a solid body and the equivalence of the 

quantity elementary hypercubes 1n. These conditions lead to a system of n-1 equations that is not 

solvable for n > 2 not only in integers, but also in real numbers. To understand this we recall 

impossibility of constructing a right triangle, in which the hypotenuse is equal to the sum of the 

lengths of the legs. It is easy to verify that for these conditions, one of the legs will necessarily be 

equal to zero. Consequently, the construction of three nested hypercubes with integer edges is not 

exists in a space of whole numbers Zn, n > 2 (aporia in terms of Ancient Greek philosophy), and there 

is no such triplet of numbers that would violate the Fermat's Last theorem. 

 

 

Picture 2. Three nested hypercubes. Piercing by a two-dimensional plane. There is no parallax effect 

 

The thesis about the piercing (or penetrating) rather than cutting plane of a two-dimensional 

hypercube is easy to understand the basics of linear algebra AX = B (matrix form). It follows from 

the Kronecker-Capelli theorem that the set of solutions X to a system of linear equations forms a 

hyperplane of dimension n - rank A in Rn. For example, for a three-dimensional space and a two-

dimensional intersection plane: dim (X) = 3 - 2 = 1. For 4 dimensional space and more dim(X) = 4 - 
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2 = 2 and so on. Therefore, a two-dimensional probe can be covered by a closed loop in a plane 

orthogonal to the piercing one, and it is appropriate to speak of piercing rather than intersection.) 

In XVII century described physical approach was enough for proof, but not in XXI. More formal 

approaches is required [1]. 

 

The set Theory and binary relations approaches 

It should be noted without change generality that the natural numbers in formula (1) are related 

as a < b < c, and the situation of equality of edges a = b is excluded due to the irrationality of . The 

case of negative numbers can be considered by moving term into another part of the equation and 

substitution of variables - it is enough prove the theorem for the case of natural numbers a, b, c and 

generalize the result to whole numbers Z.  

Let’s consider inscribed hypercubes with edges, obtained from a series of consecutive natural 

numbers N1, the centers which coincide with the origin of coordinates, and the faces are perpendicular 

to the axes coordinates Hypercubes ei with edges i based on a series natural numbers inscribed in each 

other form an increasing chain sets and the inclusion relation in the set U which is understood as large 

hypercube with edge c: 

e0 ⊆ e1 . . . ⊆ ek ⊆ ek+1 . . . ek+l ⊆ ek+l+1 … ⊆ ek+l+m ⊆ U    (3) 

1n ∪ S1 ∪ S2 … ∪ Sk ∪ Sk+1 . . . ∪ Sk+l ∪ Sk+l+1 … ∪ Sk+1+m ⊆ U 

A set partition one can see above. On the other hand, this formula describes a one-dimensional 

probe penetrating three nested hypercubes through a common center. The result of the Cartesian 

Product of two orthogonal probes can be seen in Picture 2 above, so the researcher can obtain a two-

dimensional plane regardless of the space dimension. There is no parallax effect. 

As mentioned in (3)  the a-Small n-cube an is the set of layers from 1 to k, the b-Medium bn is 

the set of layers from k+1 to k + l and the c-Large cn is the set of layers from k+l+1 to k + l + m. The 

layer is defined as the subset difference Si = ei \ ei-1, i > 1. The first hypercube e0 denote 1n or 2n, in 

parity, but given the enclosures below, this detail is not leads to qualitative differences. The 

mathematicians of ancient Greece introduced the concept of incommensurability of linear segments. 

Table 

The postulates of Euclid in the Digital epoch 

Figure in Euclidean space (Rn)  

provided central symmetry 

Analogue in Zn 

set of hypercubes provided central 

symmetry 

Dimension 

Dot 1n 0 and at the same time n 

depending on the situation   

Linear segment  i11n-1  set of hypercubes 

cardinality = i lined up in a row or 

column one  

1 

Plane  i21n-2   set of hypercubes 

cardinality = i2 ordered in a square 

2 
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The linear segments of length √2 and 1 are incommensurable. From these positions, each layer 

Si is incommensurable with another Sj in the Zn, n >2. It is easy to see that the analogous is true for 

sets of continuously following layers. The “uniqueness” of a layer can be formed by the condition: ∄ 

scale and set partition and natural i, j for which the measure |Si| = |Sj |± |Sj-1| + . . . for n > 2, where |S| 

is cardinality i.e. quantity of 1n in the investigated set.  The axiom of defining the measure (volume 

in in terms of physics) over the set is violated. The measures of the set of layers S are not possess the 

additivity property in whole number multidimensional space Zn for n > 2. The operations of addition, 

subtraction, reduction, other comparison of different layers are being prohibited. So formula (3) 

describing structure of hypercube and understanding measure axiom for Si in Zn are enough for proof. 

If ∃ the function F map the set of hypercube elements from the large hypercube cn (the set U) 

into it F = { (y, z) | ∀ y ∈ U ∃! x ∈ U} then: ∀ F = G * H where: H = {(x, y) | x ∈ {Si} ∧ y ∈ {Si} } 

are equivalent relations within and G = {(x, y) | x ∈ {Si} ∧ y ∈ {Sj} : i ≠j } between different layers. 

Let us focus on the restriction of the relation G to one specific layer G|Si = {(x, y)| x ∈ {Si} ∧ {Si} ∈ 

cn \ bn, y ∈ a-Small}. 

Rejecting options that violate the central symmetry of the constuction, one can get either a set 

of layers in a-Small, or the entire subset of it as a whole, depending on the ratio of powers |Si| and |a-

Small| subsets. By scaling and decreasing the thickness of the layers, it is possible to achieve a 

situation where a single layer from cn \ bn is mapped to a set of layers into a-Small. Obviously ∄ 

equivalence function F in Zn, n > 2 maintaining the fundamental properties of the our construction: 

central symmetry and continuous succession of layers (because the function G should transfer 

pairwise disjoint equivalence classes of the elements ik1n-k – cuboid, but to ensure the simultaneous 

matching of the elements of the layer more than to one class is impossible due to the unsolvability 

for n > 2 of the stipulated below system of n-1 equations): 

jn-1 = in-1 + (i-1)n-1  + . . . ( two or more terms)     (4) 

      jn-2 = in-2 + (i-1)n-2  + . . . (two or more terms) 

     . . .         this series of equations continues from n-1  to 1 power. The observing construction 

has been filling of layers from the periphery to the center. 

  

Picture 3. ∄ equivalence function F in Zn , n > 2 maintaining the fundamental properties  

of the Construction: central symmetry and continuous succession  

of layers except two-dimensional case (trapezoid) 
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For the special case Z2  ∃ G, thanks to one equivalence class: comparison of trapezoid square is 

possible for ∀ i , j: ∃ hi and hj such as Si * hi = Sj*hj in Q numbers and by virtue of scaling for Z.  

In the middle of the 20th century french mathematician Claude Chabauty in 1938 defended his 

doctoral dissertation on number theory and algebraic geometry, actively applied the methods of 

symmetry of subspaces in analysis of Diophantine equations. Minhyong Kim a mathematician from 

the University of Oxford, researching hidden arithmetic symmetry of the Diophantine equations, said: 

“It should be possible to use ideas from physicists to solve problems in number theory, but we haven’t 

thought carefully enough about how to set up such a framework” (https://clck.ru/32nv3t). The 

algorithmic unsolvability of Hilbert's Tenth Problem was proved by Yuri Vladimirovich 

Matiyasevech in 1970  at the St. Petersburg branch of the Mathematical Institute. V. A. Steklov RAS 

[4]. From a philosophical standpoint, formula (1) has a contradiction between form (central 

symmetry) and content (volume) for n >2. 
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