

УДК 574.24 https://doi.org/10.36906/KSP-2023/55

Юмагулова Э.Р.

ORCID: 0000-0003-4076-4059, канд. биол. наук **Дерябкина Н.А., Зайнетдинова Г.С., Юмагулов Р.Н.** Нижневартовский государственный университет г. Нижневартовск, Россия

АНАТОМИЧЕСКИЕ ПОКАЗАТЕЛИ ЛИСТЬЕВ *CHAMAEDAPHNE CALYCULATA* (L.) МОЕNCH В ЗОНЕ ТЕПЛОВОГО ВЛИЯНИЯ ГАЗОВОГО ФАКЕЛА

Аннотация. Работа проведена на верховом болоте в условиях теплового влияния газового факела по сжиганию попутного нефтяного газа. Показано, что тепловое влияние факела приводит к уменьшению значения большинства изученных анатомических параметров листьев *Chamaedaphne calyculata* (L.) Moench от 13 до 28%. Исключение выявлено по толщине столбчатого мезофилла. Данный показатель увеличивался в среднем на 5%, что связано с компенсаторной функцией растений в неблагоприятных условиях обитания.

Ключевые слова: верховое болото; газовый факел; *Chamaedaphne calyculata* (L.) Moench; анатомические параметры листьев.

Yumagulova E.R.
ORCID: 0000-0003-4076-4059, Candidate of Biological Sciences
Deryabkina N.A., Zainetdinova G.S., Yumagulov R.N.
Nizhnevartovsk State University
Nizhnevartovsk, Russia

ANATOMICAL INDICATORS OF LEAVES OF CHAMAEDAPHNE CALYCULATA (L.) MOENCH) IN THE ZONE OF THE THERMAL INFLUENCE OF A GAS FLARE

Abstract. The work was carried out on a raised bog under conditions of the thermal influence of a gas torch for burning associated petroleum gas. It has been shown that the thermal influence of the torch leads to a decrease in the value of most of the studied anatomical parameters of leaves of Chamaedaphne calyculata (L.) Moench from 13 to 28%. An exception was found in the thickness of the columnar mesophyll. This indicator increased by an average of 5%, which is associated with the compensatory function of plants in unfavorable living conditions.

Keywords: raised bog; gas torch; Chamaedaphne calyculata (L.) Moench; anatomical parameters of leaves.

Болотные экосистемы выполняют комплекс важных экологических функций в биосфере: климатическую, геоморфологическую, гидрологическую, обеспечивают сохранение генофонда живых организмов [2].

Проблема прогнозирования состояния торфяных болот актуальна в связи с наблюдаемыми в последние десятилетия изменениями климата, которые связывают с увеличением содержания парниковых газов в атмосфере [7].

В зоне влияния факела сжигания попутного газа, которое определяется преимущественно повышением температуры среды, происходит существенная

трансформация растительного сообщества, обусловленная различным характером адаптационных процессов у разных видов растительного сообщества [5].

Анатомические особенности листьев сосудистых растений верховых болот среднетаежной зоны в условиях теплового влияния газового факела по сжиганию попутного нефтяного газа изучены недостаточно, в связи с чем, данная тема была выбрана нами для изучения.

Целью исследования являлось изучение анатомических параметров листьев *Chamaedaphne calyculata* (L.) Moench в зоне теплового влияния газового факела.

В качестве объекта нами был выбран один из доминирующих вечнозеленых кустарничков верховых болот - мирт болотный (*Chamaedaphne calyculata* (L.) Moench).

Исследование проводилось в период с 2021 по 2022 гг (конец июня – начало июля) на территории верхового (олиготрофного) болота, расположенного возле газового факела по сжиганию попутного нефтяного газа Покачевского нефтяного месторождения (Ханты-Мансийский автономный округ – Югра).

Сообщество верхового болота представлено сосново-кустарничково-сфагновой ассоциацией. Рельеф выположенный, грядово-мочажинный. Почвы торфяно-глеевые, с торфяным слоем до $1-2\,\mathrm{m}$.

Для изучения анатомических параметров, на каждом участке, был проведен сбор сформированных листьев со средней части 30 кустарничков. Отобранные листья фиксировали в 70% этаноле. Количество отобранных листьев с каждого растения составило – 10.

Контрольный участок располагался в 500 м от ствола факела, опытный в 100 м. Размер пробной площадки составлял 10×10 м.

Поперечные срезы листьев проводили с использованием замораживающего микротома M3-3 (Россия). Анатомические параметры листьев *Chamaedaphne calyculata* (L.) Moench: толщину – листа, кутина, нижнего и верхнего эпидермиса листа, столбчатого и губчатого мезофилла листа изучали с помощью цифрового видео микроскопа высокого разрешения HIROX KH-7700 с использованием Lens MX (G) – 140.

Определение температуры и относительной влажности воздуха проводили с помощью измерителя КІМО КІЅТОК модели КТ100; температуры торфогрунта – почвенным термометром; рН торфогрунта - кондуктометром inoLab 740; освещенность – цифровым фотометром ТКА-04/3.

Статистическую обработку данных проводили с помошью регрессивного и корреляционного анализа с доверительной вероятностью 95%. Статистически значимые различия были выявлены с использованием дисперсионного непараметрического метода (тест Краскела-Уоллиса). Значительные расхождения между сравниваемыми средними значениями принимались с уровнем достоверности 95% и выше (P<0,05). В таблице приведены средние арифметические биологических репликаций и стандартные погрешности.

Анализ физико-химических параметров среды показал, что газовый факел значительно влияет на свойства почвенной и воздушной среды. При приближении к факелу в ряду 500м \rightarrow

100 м повышаются значения температуры воздуха (на 3°С) и влажности атмосферного воздуха (на 15%), температуры торфогрунта (на 3°С); снижается уровень освещения (от 1320,00 до 1210,50 люкс), сдвигается значение рН - водородного показателя (от 2,5 до 3,4).

Анализ результатов исследования анатомических параметров листьев *Chamaedaphne calyculata* (L.) Моепсh в условиях теплового влияния газового факела Покачевского месторождения, показал снижение значения большинства изученных показателей (83%) на опытном участке (100 м от ствола факела) по сравнению с контролем (500 м). Снижение параметров происходило от 13 (по толщине листа) до 28% (по толщине верхнего эпидермиса). Увеличивался на опыте один показатель - толщина столбчатого мезофилла, на 5% (табл.).

Толщина кутина у листьев *Chamaedaphne calyculata* (L.) на контроле изменялась в пределах от 6,05 до 12,11 мкм и в среднем составляло 8,92 мкм. На опытном участке данный показатель варьировал от 4,04 до 9,49 мкм, что соответствовало усредненному значению 6,50 мкм. Сравнение данных показало, что на опыте, в условиях теплового, иссушающего влияния факела - толщина кутикулы снижается на 27% в сравнении с контролем (табл.).

Таблица Анатомические параметры листьев *Chamaedaphne calyculata* (L.) Moench на территории факельного хозяйства Покачевского месторождения

Параметры	Показатель	Контроль	Опыт
Толщина кутина, мкм	Xcp.	$8,92 \pm 1,81$	$6,50 \pm 1,87$
	Lim	6,05 - 12,11	4,04 - 9,49
Толщина листа, мкм	Xcp	$260,12 \pm 34,06$	$225,39 \pm 44,19$
	Lim	217,60 - 353,39	173,17 - 352,64
Толщина верхнего эпидермиса, мкм	Xcp	$5,49 \pm 1,13$	$3,94 \pm 0,98$
	Lim	3,08 - 7,61	2,42 - 5,85
Толщина нижнего эпидермиса, мкм	Xcp	$6,22 \pm 1,42$	$4,75 \pm 1,17$
	Lim	3,75 - 8,57	3,01 - 6,59
Толщина столбчатого мезофилла, мкм	Xcp	$98,39 \pm 11,04$	$103,27 \pm 19,25$
	Lim	58,09 - 123,41	83,30 - 164,43
Толщина губчатого мезофилла, мкм	Xcp	$127,88 \pm 15,32$	$104,67 \pm 20,66$
	Lim	106,27 - 163,28	78,03 - 155,34

Значение толщины листа варьировало на контрольном участке от 217,60 до 353,39 мкм, что соответствовало среднему значению 260,12 мкм. В условиях опыта данный параметр изменялся от 173,17 до 352,64 мкм, среднее его значение составило - 225,39 мкм. Выявлено, что на опытном участке толщина листа снижалась на 13% по сравнению с показателями, полученными на контроле (табл.).

Показатель толщины нижнего эпидермиса листа на всех участках был выше по сравнению с толщиной верхнего эпидермиса, на контроле на 12%, на опыте на 17%.

Толщина нижнего эпидермиса листа изменялась: на контроле от 3,75 до 8,57 мкм и имела среднее значение 6,22 мкм; на опыте – от 3,01 до 6,59 мкм, средний показатель составил 4,75

мкм. Сравнение полученных данных показало, что на опыте толщина нижнего эпидермиса уменьшается в среднем на 24% при сопоставлении с данными на контрольном участке (табл.).

Параметры толщины верхнего эпидермиса листа на контрольном участке варьировали от 3,08 до 7,61 мкм и в среднем составлял 5,49 мкм, на опыте от 2,42 до 5,85 мкм, что соответствовало среднему значению 3,94 мкм. Анализ данных показал, что на 28% показатель толщины верхнего эпидермиса снижался на опытном участке в 100 м от факела, при сравнении с данными полученными на контроле (табл.).

Значение толщины губчатого мезофилла в среднем на всех участках было выше по сравнению с данными по толщине столбчатого мезофилла, на контрольном участке на 23 и на опытном, на 1%. Соотношение толщины губчатого и столбчатого мезофилла на опыте было минимальным по сравнению с контролем (табл.).

Толщина столбчатого мезофилла изменялась на контроле в пределах от 58,09 до 123,41 мкм и в среднем имела значение 98,39 мкм, на опыте от 83,30 до 164,43 мкм со средним значением 103,27 мкм. В условиях теплового влияния факела, значение толщины столбчатого мезофилла повышалось на 5% при сопоставлении с данными полученными на контроле. Данный показатель единственный из всех изученных, значение которого, на опыте увеличивалось. Все остальные параметры наоборот уменьшались от 13 (по толщине листа) до 28% (по толщине верхнего эпидермиса) (табл.).

Показатель толщины губчатого мезофилла варьировал на контрольном участке от 106,27 до 163,28 мкм, что в среднем составило 127,88 мкм, соответственно на опытном от 78,03 до 155,34 мкм со средним значением 104,67 мкм. Результат исследования показал, что на 18% толщина губчатого мезофилла снижалась на опыте по сравнению с данными на контрольном участке (табл.).

Изученные анатомические параметры листьев *Chamaedaphne calyculata* (L.) Моепсh в условиях теплового влияния факела, позволили определить, показатели, которые в наибольшей степени снижались на опытном участке по сравнению с контролем: толщина верхнего эпидермиса, толщина кутина и толщина нижнего эпидермиса, соответственно на 28, 27 и 24%. В наименьшей степени уменьшались значения данных по толщине губчатого мезофилла и толщине листа, соответственно на 18 и 13 %. Показатель толщины столбчатого мезофилла — оказался единственным из изученных, который не снижался, а наоборот повышался в условиях теплового действия факела (на 5%).

Анализ полученных данных показывает, что газовый факел меняет физико-химические свойства торфогрунта, воздушной среды и уровень освещения. Растения адаптируются к новым условиям обитания и изменяют, вначале физиологические и биохимические механизмы адаптации, а затем происходят анатомо-морфологические изменения [6].

Воздействие факторов внешней среды, в том числе антропогенных, в первую очередь оказывают влияние на физико-химические и биологические процессы клетки, которые меняют химический метаболизм и вызывают функциональную, структурную перестройку растения [1; 3].

В литературе показано, что размеры ассимиляционной ткани играют существенную роль в адаптации вида к новым условиям произрастания [4].

Растения верховых болот в ходе онтогенеза адаптируются к антропогенным и к неблагоприятным природным факторам среды, таким как: обилие влаги, застойность и слабая проточность воды, недостаток кислорода в торфогрунте (1%), низкая теплопроводность торфогрунта, бедность торфогрунта минеральными элементами, повышенная кислотность и постоянное нарастание сфагновой дернины и торфа. В результате на болоте сформировалась специфическая флоры, которая характеризуется наличием: гидроморфных и ксероморфных признаков; образованием микоризы на корнях; формированием новых придаточных корней, корневищ, узлов кущения; отсутствие ризоидов у мхов; переход к смешанному автотрофноголозойному питанию у насекомоядных росянок [2].

Таким образом, анализ полученных нами данных показал, что тепловое влияние газового факела Покачевского месторождения приводит к уменьшению значения большинства изученных анатомических параметров листьев *Chamaedaphne calyculata* (L.) Moench от 13 до 28%. Исключение выявлено по толщине столбчатого мезофилла, данный показатель увеличивался в среднем на 5%, что связано с компенсаторной функцией растений в неблагоприятных условиях воздействия факела по сжиганию попутного нефтяного газа и в целом носит адаптационный характер.

В дальнейшем, мы планируемя проведение комплексного анализа анатомоморфологических, физиологических и биохимических параметров доминирующих сосудистых растений верховых болот (клюквы болотной, багульника болотного, подбела восколистного, морошки приземистой и др.) в условиях влияния газового факела и урбанизированной среды.

Полученные результаты могут быть использованы в оценке состояния сосудистых растений при биомониторинге верховых болот в условиях изменения климата и влияния различных антропогенных факторов.

Литература

- 1. Иванов Л.А. Морфологические и биохимические особенности бореальной зоны с разными типами адаптивных стратегий: автореф. дис. ... канд. биол. наук. Томск, 2001. 24 с.
- 2. Иванова Н.А., Юмагулова Э.Р. Эколого-физиологические механизмы адаптации и типы стратегии сосудистых растений верховых болот. Нижневартовск: Изд-во Нижневарт. гуманит. ун-та, 2009. 186 с.
- 3. Луговской А.М. Мониторинг природной среды методом индикации сосны обыкновенной в условиях техногенеза Русской равнины: автореф. дис. ... канд. геогр. наук. Волгоград, 2004. 37 с.
- 4. Лукина Н.В., Чукина Н.В., Филимонова Е.И., Глазырина М.А., Учаев А.П., Борисова Г.Г. Морфофизиологические особенности *Pinus silvestris* L. в искусственных насаждениях на дражном отвале после золотодобычи // Лесохозйственная информация. 2022. № 3. С. 145-157.

- 5. Шавнин С.А., Юсупов И.А., Артемьева Е.П. Трансформация структуры нижних ярусов лесоболотной растительности в зоне теплового влияния газового факела // Известия Оренбургского государственного аграрного университета. 2013. № 1. С. 20-25.
- 6. Юмагулова Э.Р., Иванова Н.А., Скоробогатова О.Н. Функционально биохимические особенности Охусјссиѕ palustris Rels. в условиях влияния газового факела (Ханты-Мансийский округ Югра, Россия) // Западно-Сибирские торфяники и цикл углерода: прошлое и настоящее: Мат-лы VI Международного полевого симпозиума (г. Ханты-Мансийск, 28 июня 08 июля 2021 г.). Томск, 2021. С. 211-213.
- 7. World Development Report 2010. Development and Climate Change. Washington DC: IBRD / World Bank, 2010. 417 p.

© Юмагулова Э.Р., Дерябкина Н.А., Зайнетдинова Г.С., Юмагулов Р.Н., 2024

