Культура, наука, образование: проблемы и перспективы XI Международная научно-практическая конференция

УДК 622.276 https://doi.org/10.36906/KSP-2023/65

Рукин М.В.

ORCID: 0000-0002-3624-984X Нижневартовский государственный университет

г. Нижневартовск, Россия

ИССЛЕДОВАНИЕ ТЕПЛОВЫХ ПРОЦЕССОВ В ПОГРУЖНОМ ДВИГАТЕЛЕ ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА В ПЕРИОДИЧЕСКОМ РЕЖИМЕ ОТКАЧКИ

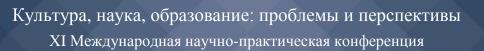
Аннотация. Механизированная добыча нефти электроцентробежными насосными установками — один из наиболее распространенных способов эксплуатация скважин в РФ. Перспективным направлением является использование периодического режима откачки при добыче нефти из низкодебитных скважин. В данной работе изучено формирование теплового режима погружного электродвигателя ЭЦН, работающего в режиме периодической кратковременной откачки.

Ключевые слова: электроцентробежный насос; погружной электродвигатель; температура погружного двигателя; теплообмен; периодический режим; длительность откачки; цикл накопления.

Rukin M.V.

ORCID: 0000-0002-3624-984X Nizhnevartovsk State University Nizhnevartovsk, Russia

RESEARH OF THERMAL PROCESSES IN THE SUBMERSIBLE MOTOR OF AN ELECTRIC CENTRIFUGAL PUMP IN THE PERIODIC PUMPING MODE


Abstract. Mechanized oil production by electric pumping units is one of the most common methods of oil production in the Russian Federation. A promising direction is the use of a periodic pumping mode when extracting oil from low-flow wells. In this paper, the formation of the thermal regime of the submersible electric motor of the ECN operating in the mode of periodic short-term pumping is studied.

Keywords: electric centrifugal pump; submersible electric motor; submersible motor temperature; heat exchange; periodic mode; pumping duration; accumulation cycle.

Механизированная добыча нефти электроцентробежными насосами (ЭЦН) — один из ведущих способов добычи нефти в РФ, при эксплуатации высокодебитных скважин (дебитом 50-100 м³/сут и более) ЭЦН получил повсеместное распространение. Однако для эксплуатации низкодебитных скважин традиционные ЭЦН не адаптированы — при малом расходе жидкости ключевые узлы ЭЦН, такие как погружной двигатель, насос и кабельная линия подвержены перегреву, ускоряющему износ указанных узлов [1].

Для решения проблемы перегрева ЭЦН перспективным является способ периодической откачки с небольшой продолжительностью циклов откачки и накопления, порядка нескольких минут. При включенном насосе он работает в обычном режиме с высокой

производительностью и КПД, но короткое время. Подача насоса обеспечивается главным образом за счет жидкости в затрубном пространстве, уровень которой в цикле откачки закономерно снижается. Для подъема динамического уровня до исходной величины насос отключают, также на непродолжительное время, но превышающее длительность цикла откачки. В режиме накопления ПЭД и кабельная линия остывают, что позволяет предупредить их перегрев. Расчет и прогнозирование теплового режима погружного двигателя является важным аспектом при обоснованном подборе оптимального режима периодической эксплуатации скважины ЭЦН.

В данной работе представлена математическая модель, описывающая теплообмен погружного двигателя со скважинным флюидом, позволяющая рассчитать температуру погружного двигателя в процессе эксплуатации ЭЦН как в течение вывода скважины на режим, так и в режиме периодической эксплуатации. Рассматриваемая постановка задачи включает уравнения теплопроводности, решаемые для следующей геометрии (рис. 1).

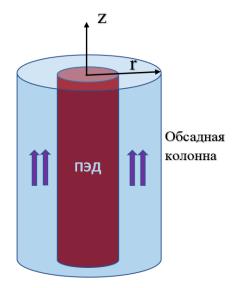


Рис. 1. Геометрия задачи (стрелками показано направление движения флюида в скважине)

Динамика температуры погружного двигателя описывается следующим уравнением, учитывающим процесс теплопроводности в сочетании с тепловыделением в двигателе [4]:

$$\rho c \frac{\partial T}{\partial t} = \frac{\lambda}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + q(t)$$
 (1)

где ρ — эффективная плотность двигателя, c— его удельная теплоемкость; λ — теплопроводность; q(t) — интенсивностьвыделения тепла, которая принимается постоянной в процессе вывода скважин на режим, и меняется как ступенчатая функция во времени при периодической эксплуатации:

$$q(t) = \frac{P(t)(1-\eta)}{\pi R^2 L}$$

$$P(t) = \begin{cases} P_0, 0 \le t \le t_1, & t_1 + t_2 \le t \le 2t_1 + t_2, \dots \\ 0, t_1 \le t \le t_1 + t_2, & 2t_1 + t_2 \le t \le 2t_1 + 2t_2, \dots \end{cases}$$
(2)

Культура, наука, образование: проблемы и перспективы XI Международная научно-практическая конференция

где P_0 , η — мощность и КПД погружного двигателя соответственно; t_1 , t_2 — длительность циклов работы и остановки насоса; R — внешний радиус погружного двигателя.

Начальные и граничные условия для задачи имеют вид:

$$T\Big|_{t=0} = T_0$$

$$\frac{\partial T}{\partial r}\Big|_{r=0} = 0$$

$$\lambda \frac{\partial T}{\partial r}\Big|_{r=R} = \alpha \left(T_f - T_w\right)$$
(3)

где T_0 – начальная температура, $T_w = T \Big|_{r=R}$.

Для определения температуры жидкости T_f записывается уравнение теплового баланса, учитывающее теплообмен между жидкостью и погружным двигателем (коэффициент h), а также теплообмен жидкости с окружающей средой (коэффициент h_c объединяется в себе тепловые сопротивления трубы НКТ и колонны, межтрубного пространства, цемента и породы) [2; 5]:

$$\rho_f c_f S_f \frac{\partial T_f}{\partial t} + \rho_f c_f Q \frac{\partial T_f}{\partial z} = h \left(T - T_f \right) + h_c \left(T_g - T_f \right) \tag{4}$$

где T_g — естественная температура на глубине установки погружного двигателя; индекс fзаписан для жидкости; S_f и Q— площадь сечения и расход потока. Система уравнений (1)-(4) решается численно. Расчет расхода жидкости в обсадной колонне проводится на основе уравнения баланса объема жидкости в системе пласт-скважина-насосная установка [3].

Тепловые процессы, протекающие в системе жидкость — погружной двигатель, рассматриваются на примере двигателя 1ВЭДБТ45-117 мощностью 45 кВт и КПД 90%, внешним диаметром 117 мм и длиной 3 м. Откачка производится в течение времени 5 мин, пауза между циклами откачки составляет 10 мин, производительность ЭЦН 90 м 3 /сут, приток жидкости из пласта 30 м 3 /сут, начальная невозмущенная температура в модели 80 °C.

Динамика температуры погружного двигателя и жидкости, омывающей двигатель, показана на рисунке 2. Изменение во времени мощности тепловыделения в погружном двигателе и расхода жидкости в обсадной колонне показано на рисунке 3.

Максимальная температура погружного двигателя и жидкости достигаются при непрерывной работе ЭЦН и составляют 117 и 89 $^{\circ}$ С соответственно (разогрев соответственно равен 37 и 9 $^{\circ}$ С). После перехода на режим периодической эксплуатации максимальный разогрев двигателя и омывающей жидкости снижается до 15 и 2 $^{\circ}$ С, амплитуда изменения температуры в течение цикла откачки составляет 7 и 1 $^{\circ}$ С соответственно.

Выполнены исследования влияния длительности циклов откачки и накопления на температуру погружного двигателя [2]. Результаты моделирования показали, что при большей длительности цикла откачки температура погружного двигателя достигает большей величины. Например, при длительности откачки 10 мин разогрев погружного двигателя возрастает уже до 20°C, что на 33% больше, чем при длительности откачки 5 мин. Вопрос подбора

длительности циклов откачки и накопления играет важную роль для обеспечения эффективной и надежной работу ЭЦН в периодическом кратковременном режиме работы.

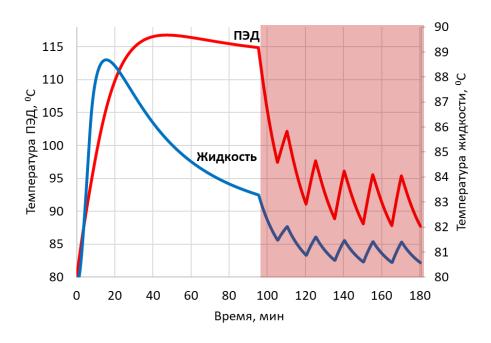


Рис. 2. Изменение во времени температуры погружного двигателя и омывающего флюида, цветом показан режим периодической эксплуатации

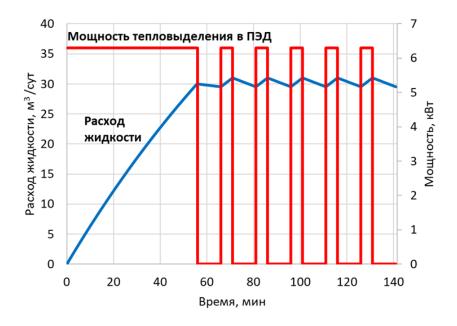


Рис. 3. Изменение во времени мощности тепловыделения в погружном двигателе и расхода жидкости в обсадной колонне

Разработана численная математическая модель, описывающая теплообмен погружного двигателя со скважинным флюидом. Предложенный инструмент может быть использован для расчета теплового режима погружного двигателя при проектировании работы электроцентробежной установки, работающей в периодическом режиме эксплуатации.

Литература

- 1. Уразаков К.Р., Думлер Е.Б., Топольников А.С., Вахитова Р.И. Диагностирование технического состояния электроцентробежных насосных установок по уровню их вибрации // Нефтегазовое дело. 2017. Т.15. № 1. С. 103–107.
- 2. Уразаков К.Р., Рукин М.В., Борисов А.О. Моделирование тепловых процессов в погружном двигателе электроцентробежного насоса, работающего в периодическом режиме // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 4. С. 62-71.
- 3. Уразаков К.Р., Тимашев Э.О., Молчанова В.А., Волков М.Г. Справочник по добыче нефти. Пермь: Астер Плюс, 2020. 600 с.
- 4. Bergman Th.L, Lavine A.S., Incropera F.P., DeWitt D.P. Fundamentals of heat and mass transfer, 8th edition. University of Notre Dame, USA, 2006. 1070 p.
- 5. Hasan A.R., Kabir C.S. Fluid flow and heat transfer in wellbores. Texas, Richardson: Society of Petroleum Engineers, 2002. 181 p.

© Рукин М.В., 2024

