СЕКЦИЯ «КРИОГЕННАЯ И ХОЛОДИЛЬНАЯ ТЕХНИКА»

НИЗКОУГЛЕРОДНАЯ ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ ВОДОРОДА

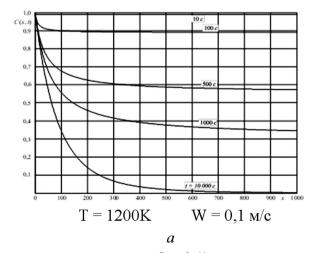
Е.В. Керосиров, А.В. Гришин, В.Д. Долгих, И.В. Кудинов

Самарский государственный технический университет, Самара, Россия

Обоснование. Магистральное направление развития мировой энергетики на ближайшие годы — переход к низкоуглеродным технологиям производства и потребления энергии. Наряду с расширением использования возобновляемых источников энергии (ВИЭ) в рамках перехода к низкоуглеродной энергетике планируется расширенное применение водорода в качестве топлива и энергоносителя. Научная значимость проводимых исследований обусловливается тем, что к настоящему времени не существует фундаментальных, теоретических и методологических основ энергоэффективного получения водорода и перехода к водородной энергетике [1–3].

Цель — разработать низкоуглеродную технологию получения водорода.

Методы. Для осуществления процесса пиролиза метана в газовой фазе (рис. 1) и конденсированной среде был изготовлен реактор из высоколегированной стали марки 20X23H18 с обеспечением возможности загрузки различных катализаторов.


Выполнена разработка и проведено исследование математических моделей разложения метана при его пиролизе, включающих изменение концентрации метана от температуры и скорости подачи газа во времени реакции (рис. 2) [4].

С целью предотвращения аварийных режимов работы лабораторного стенда выполняются аналитические и численные исследования температурного и термонапряженного состояния кварцевых реакторов (рис. 3), предназначенных для получения водорода путем пиролиза метана, пропускаемого через конденсированную среду (жидкий металл или расплавы солей). Расчеты проводились в программном комплексе Ansys Workbench [5].

Выяснилось, что для лучшей конверсии метана необходимо увеличивать площадь контакта фаз «жидкость-газ». Для этого было принято решение использовать диспрегаторы.

Рис. 1. Газовый реактор каталитического пиролиза метана

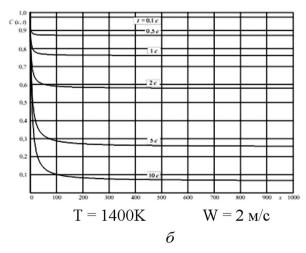


Рис. 2. Изменение концентрации метана по координате во времени

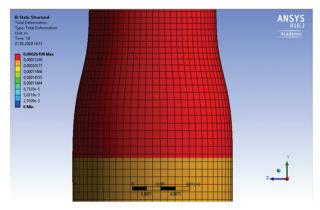


Рис. 3. Деформационная картина на стыке двух сред в тигеле реактора

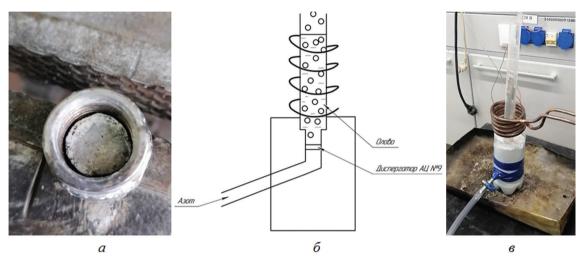


Рис. 4. Модельная установка для исследования диспергатора

Диспергатор — это пористый материал, который при пропускании газа через себя дает пузырьки малого размера, что способствует увеличению площади контакта фаз.

На кафедре были проведены предварительные исследования, в ходе которых выявились наилучшие диспергаторы с наименьшим размером пор. Одним из таких стал — алюмоциркониевый диспергатор № 9 (рис. 4, *a*). Для эксперимента была создана модельная установка, суть которой состояла в том, чтобы проверить, насколько тот или иной диспергатор уменьшает размер пузырьков газа азота в расплавленном олове (рис. 4, *б*, *в*).

Результаты. При исследовании математической модели разложения метана при его пиролизе можно судить о том, что при температуре 1200 К и скорости подачи газа 0,1 м/с для разложения более чем 90 % метана потребуется 10 000 с, а при температуре 1400 К и скорости 2 м/с для разложения такого же количества метана потребуется 10 с.

Далее при исследовании температурного и термонапряженного состояния кварцевых реакторов выяснилось, что в случае использования неметаллических реакторов необходимо предварительно решать тепловую и термоупругую задачу для определения необходимой толщины реактора и допустимых температурных режимов, не приводящих к аварийному повреждению тигеля реактора.

В ходе эксперимента по исследованию диспергаторов также выяснилось, что АЦ № 9 образует пузырьки газа азота диаметром 2—3 мм и предотвращает коагулирование и образование поршневого эффекта в расплавленном олове, разогретом до температуры 250 °C.

Выводы. В результате научно-исследовательской работы был разработан экспериментальный стенд пиролиза метана, изучены параметры процесса разложения метана, проведены исследования диспергаторов, которые будут использоваться в дальнейшем для увеличения конверсии реакции.

Ключевые слова: пиролиз метана; бирюзовый водород; технология получения водорода; стенд для пиролиза метана; параметры пиролиза метана.

Список литературы

- 1. Арутюнов В.С., Веденеев В.И. Пиролиз метана в области температур 1000-1700 К // Успехи химии. 1991. Т. 60, № 12. С. 2663-2684.
- 2. Бедарев И.А., Пармон В.Н., Федоров А.В., и др. Численное исследование процесса пиролиза метана в ударных волнах // Физика горения и взрыва. 2004. Т. 40, № 5. С. 91–101.
- 3. Директор Л.Б., Зайченко В.М., Майков И.Л., и др. Исследование процесса пиролиза метана при фильтрации через нагретую пористую среду // Теплофизика высоких температур. 2001. Т. 39, № 1. С. 89–96.
- 4. Кудинов И.В., Пименов А.А., Михеева Г.В. Моделирование термического разложения метана и образования твердых углеродных частиц // Нефтехимия. 2020. Т. 60, № 6. С. 781—785. DOI: 10.31857/S002824212006012X
- 5. Кудинов И.В., Пименов А.А., Михеева Г.В. Исследование термонапряженного состояния кварцевого реактора для получения водорода при пиролизе метана // Тезисы докладов XXXVI Сибирского теплофизического семинара. Новосибирск, 2020. 300 с.

Сведения об авторах:

Евгений Валерьевич Керосиров — студент, группа 4-ИТФ-3, инженерно-технологический факультет; Самарский государственный технический университет, Самара, Россия. E-mail: kerosirovv@yandex.ru

Алексей Викторович Гришин — студент, группа 5-ИНГТ-9А, институт нефтегазовых технологий; Самарский государственный технический университет, Самара, Россия. E-mail: grishin.leshagrishin@yandex.ru

Виктор Дмитриевич Долгих — инженер, институт нефтегазовых технологий; Самарский государственный технический университет, Самара, Россия. E-mail: torressva12@yandex.ru

Игорь Васильевич Кудинов — научный руководитель, доктор технических наук, профессор, заведующий кафедры физики; Самарский государственный технический университет, Самара, Россия. E-mail: igor-kudinov@bk.ru