СЕКЦИЯ «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И КОМПЬЮТЕРНЫЙ ИНЖИНИРИНГ»

ИССЛЕДОВАНИЕ ПОГРЕШНОСТИ РАЗНОСТНОГО РЕШЕНИЯ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ В МНОГОСЛОЙНОЙ СРЕДЕ МЕТОДОМ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

Ю.Ю. Кривошеева

Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Обоснование. Помимо классических вариантов краевых задач теплопроводности для однородной среды, в которых коэффициенты уравнения являются непрерывными, немалый интерес представляют случаи, когда среда состоит из несколько слоев. К таким средам можно отнести биологические объекты (кожа, сосуды) [1], многослойные обшивки технических конструкций [2], для которых нужно принимать во внимание вероятность влияния тепла на систему, так как тепловая нагрузка может привести к изменению качества материала, утрате существенных эксплуатационных характеристик, вследствие чего возможно повреждение конструкции и даже полный выход ее из строя [3]. Для уменьшения тепловой нагрузки, на поверхности, подверженные тепловому воздействию, наносят защитные покрытия. Таким образом, это сводится к задаче о теплопроводности слоистых структур, свойства теплопроводности которых меняются скачкообразно.

Цель — качественно исследовать погрешность численного решения уравнения теплопроводности в разрывной среде при помощи численного моделирования.

Методы. Для вычисления погрешности на основании теоремы о сходимости разложим разностное решение для шагов по пространству, отличающихся друг от друга в 2 раза:

$$u_{h_{x},h_{t}} = [u]_{h_{x},h_{t}} + Dh_{t} + Eh_{x} + O(h_{t}^{2},h_{x}^{2})$$

$$u_{\frac{h_x}{2}, h_t} = [u]_{\frac{h_x}{2}, h_t} + Dh_t + E\frac{h_x}{2} + O\left(h_t^2, \frac{h_x^2}{4}\right),$$

где u — разностное решение, [u] — точное аналитическое решение в узлах сетки, D, E — коэффициенты разложения.

Вычтем одно выражение из другого. При этом будем учитывать, что разность двух аналитических решений даст ноль. Таким образом получим часть погрешности $\Delta(h_{\rm x})$, связанную с измельчением шага по пространству:

$$\Delta(h_x) = \left| u_{h_x,h_t} - u_{\frac{h_x}{2},h_t} \right| = E \frac{h_x}{2} + O\left(h_t^2, \frac{h_x^2}{4}\right).$$

Также получим формулу для части погрешности, связанной с шагом по пространству, для более мелкой сетки:

$$\Delta\left(\frac{h_x}{2}\right) = \left|u_{\frac{h_x}{2},h_t} - u_{\frac{h_x}{4},h_t}\right| = E\frac{h_x}{4} + O\left(h_t^2, \frac{h_x^2}{16}\right).$$

Очевидно, что скорость убывания погрешности при измельчении сетки по пространству в 2 раза примерно равна двум. Аналогичный результат получим и для части погрешности, связанной с измельчением шага сетки по времени. Используя коэффициенты *E* и *D*, можно предсказывать погрешность решения для сеток любой мелкости.

Результаты. В табл. 1 и 2 представлены результаты исследования скорости убывания погрешности решения, полученного с помощью неявной консервативной схемы для шагов по пространству и времени.

Таблица 1. Скорость убывания погрешности, связанной с шагом по пространству для консервативной неявной схемы

I	h _x	E	$\Delta(h_x)$	$\Delta(h_x)/\Delta(h_x/2)$
5	2	0,00599	0,00599	1,7
10	1			
10	1	0,00708	0,00354	
20	0,5			2,3
20	0,5	0,00612	0,00153	
40	0,25			
40	0,25	0,00616	0,00077	2,0
80	0,125			
80	0,125	0,00672	0,00042	1,8
160	0,0625			
160	0,0625	0,00640	0,00020	2,1
320	0,03125			

Таблица 2. Скорость убывания погрешности, связанной с шагом по времени, для консервативной неявной схемы

К	h _t	D	$\Delta(h_t)$	$\Delta(h_t)/\Delta(h_t/2)$
100	0,2	0.221	0,02213	2,05
200	0,1	0,221		
200	0,1	0,216	0,01079	
400	0,05	0,210		2,04
400	0,05	0,212	0,00529	
800	0,025	0,212		
800	0,025	0,209	0,00261	2,03
1600	0,0125	0,207		
1600	0,0125	0,208	0,00130	2,01
3200	0,00625	0,200		
3200	0,00625	0,205	0,00065	2,00
6400	0,003125	0,203		

Из таблиц видно, что скорость убывания погрешности (последний столбец таблиц) равна 2, что соответствует теории. Кроме того, можно видеть стабильное поведение коэффициентов разложения, что говорит о том, что можно использовать их для прогнозирования погрешности.

Выводы. В ходе работы была построена консервативная разностная схема для численного моделирования процесса распространения тепла в двуслойной среде. Посредством вычислительного эксперимента проведено исследование порядков сходимости схемы по шагам дискретизации h_x и h_t . В результате исследования были подтверждены теоретические порядки сходимости и сделан вывод о возможности прогнозирования погрешности разностного решения.

Ключевые слова: уравнение теплопроводности; краевая задача; разностная схема; погрешность решения; порядки сходимости схемы.

Список литературы

- 1. Shirokanev A.S. Methods of mathematical modeling of fundus laser exposure for therapeutic effect evaluation // Computer Optics. 2020. Vol. 44, No. 5. P. 809–822. DOI: 10.18287/2412-6179-CO-760
- 2. Ахмадиев Ф.Г. Вычислительный эксперимент по расчету процесса теплопередачи через многослойные покрытия // Вестник технологического университета. 2021. Т. 24, № 6. С. 73—77.
- 3. Танана В.П. О решении обратной граничной задачи для композитных материалов // Вестник Удмуртского университета. 2018. Т. 28, № 4. С. 474—488.
- 4. Самарский А.А. Теория разностных схем. Москва: Наука, 1977. 656 с.
- 5. Тихонов А.Н., Самарский А.А. Уравнения математической физики. Москва: Наука, 1977. 728 с.

Сведения об авторе:

Юлиана Юрьевна Кривошеева — студентка, группа 6230-010402D, институт информатики и кибернетики; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: akinava.love@gmail.com