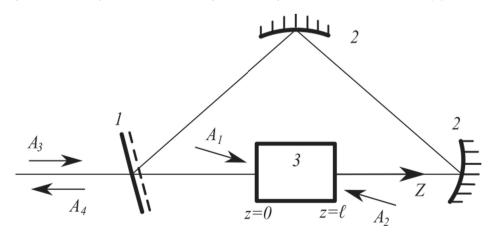
ЧЕТЫРЕХВОЛНОВОЕ ВЗАИМОДЕЙСТВИЕ НА РЕЗОНАНСНОЙ И ТЕПЛОВОЙ НЕЛИНЕЙНОСТЯХ В СХЕМЕ С ОБРАТНОЙ СВЯЗЬЮ ПРИ БОЛЬШИХ КОЭФФИЦИЕНТАХ ОТРАЖЕНИЯ

А.А. Акимов, К.Г. Казакова

Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Обоснование. Использование кольцевого резонатора, реализующего обратную связь по объектной или сигнальной волнам или по обеим волнам одновременно, является одним из перспективных способов повышения эффективности четырехволновых преобразователей излучения [1]. Для четырехволнового преобразователя излучения на тепловой нелинейности реализация обратной связи на объектную и сигнальную волны с помощью кольцевого резонатора позволила на порядки повысить коэффициент отражения таких преобразователей [2].


При взаимодействии излучения с реальной средой обычно несколько механизмов могут одновременно вносить заметный вклад в изменение комплексного показателя преломления. Например, при четырехволновом взаимодействии в поглощающих средах наряду с тепловой нелинейностью существенный вклад в объектную волну может быть связан с наличием резонансной нелинейности [3].

Цель — исследовать влияние обратной связи, реализуемой при помощи кольцевого резонатора, на амплитудные и пространственные характеристики четырехволнового преобразователя излучения на тепловой и резонансной нелинейностях.

Методы. В работе рассматривался процесс вырожденного четырехволнового взаимодействия $\omega + \omega - \omega = \omega$ в среде с тепловой и резонансной нелинейностями. Обратная связь накладывалась на сигнальную и объектную волны с помощью кольцевого резонатора (см. рисунок).

Нелинейная среда располагалась между зеркалами кольцевого резонатора. Сигнальная волна заводилась внутрь резонатора через полупрозрачное зеркало связи. Сферические зеркала осуществляли перенос пространственного распределения поля с передней грани нелинейного слоя на плоскость, расположенную на расстоянии L от задней грани нелинейного слоя.

Процесс четырехволнового взаимодействия описывался с помощью стационарного волнового уравнения и уравнения Пуассона. Изменение температуры представлялось в виде суммы медленно и быстро осциллирующих в зависимости от поперечной координаты составляющих. Волны накачки считались плоскими. Сигнальная и объектная волны раскладывались по плоским волнам. Составляющие температуры раскладывались по гармоническим решеткам. Рассматривалось приближение больших коэффициентов отражения.

Рис. Схема четырехволнового взаимодействия с обратной связью: 1 — зеркало связи, 2 — сферические зеркала, 3 — нелинейная среда

11-22 апреля 2022 г.

При больших коэффициентах отражения учитывается не только динамическая решетка показателя преломления, связанная с интерференцией сигнальной волны с первой волной накачки, но и динамическая решетка показателя преломления, возникающая при интерференции объектной волны со второй волной накачки.

В приближении заданного поля по волнам накачки, параксиальном приближении, получена система связанных дифференциальных уравнений для пространственных спектров сигнальной и объектной волн, пространственных спектров температурных решеток.

Система дифференциальных уравнений с учетом граничных условий анализировалась численными методами на основе многократного прохождения сигнальной и объектной волн нелинейного слоя в кольцевом резонаторе.

Результаты. Построены зависимости амплитудного коэффициента отражения и полуширины полосы пространственных частот объектной волны от нормированной интенсивности волн накачки в случае компенсации фазового набега, возникающего вследствие самовоздействия волн накачки, сопряжения граней нелинейного слоя (L=0) и в отсутствие обратной связи. С ростом интенсивности волн накачки наблюдается монотонное увеличение, а затем уменьшение коэффициента отражения. При увеличении параметра, характеризующего соотношение между резонансной и тепловой нелинейностями, максимум зависимости коэффициента отражения от интенсивности волн накачки возрастает. Величина максимума при компенсации фазового набега больше, чем при сопряжении граней нелинейного слоя и отсутствии обратной связи. При равных интенсивностях волн накачки наблюдается корреляция между зависимостями амплитудных и пространственных характеристик от интенсивности волн накачки в случае компенсации фазового набега. Рост коэффициента отражения соответствует уменьшению полуширины полосы пространственных частот объектной волны, и наоборот.

Выводы. Наличие обратной связи, реализуемой с помощью кольцевого резонатора на сигнальную и объектную волны, позволяет значительно увеличить амплитудный коэффициент отражения четырехволнового преобразователя излучения на тепловой и резонансной нелинейностях.

Ключевые слова: четырехволновое взаимодействие; резонансная нелинейность; тепловая нелинейность; обратная связь; кольцевой резонатор.

Список литературы

- 1. Ивахник В.В. Обращение волнового фронта при четырехволновом взаимодействии. Самара: Самарский университет, 2010.
- 2. Акимов А.А., Гузаиров С.А., Ивахник В.В. Качество преобразования излучения при четырехволновом взаимодействии на тепловой нелинейности с учетом обратной связи // Компьютерная оптика. 2021. Т. 45, № 5. С. 667–672.
- 3. Majles Ara M.H., Mehrabani S, Malekfar R. Phase conjugation using four-wave mixing in fast green FCF dye doped gelatin film // Advances in Nonlinear Optics. 2009. Vol. 2009. ID 371974. DOI: 10.1155/2009/371974

Сведения об авторах:

Ксения Геннадьевна Казакова — студентка, группа 4201-030402D, физический факультет; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: kazakova.cen@yandex.ru

Александр Александрович Акимов — научный руководитель, кандидат физико-математических наук; доцент кафедры оптики и спектроскопии; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: alexakimov50@mail.ru