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 � The aim of the present study was to examine the potential of machine learning for identification of 

isolated neurosensory retina detachment and retinal pigment epithelium (RPE) alterations as diagnostic 

criteria of central serous chorioretinopathy (CSC). Material and methods. Patients with acute CSC 

in whom a standard ophthalmic examination and optical coherence tomography (OCT) using RTVue-XR 

Avanti (Angio Retina HD scan protocol, 6 × 6 mm) was performed were included in the study. 10-μm 

en face slab above the RPE layer was used to create ground truth masks. Learning aims were defined 

as identification of 3 classes of structural abnormalities on OCT cross-sectional scans: class 1 – sub-

retinal fluid, class 2 – RPE abnormalities, and class 3 – leakage points. Data for each of the 3 classes 

included: 4800/1400 trai ning/test images for class 1, 2000/802 training/test images for class 2, and 

1504/408 trai ning/test images for class 3. Unet-similar architecture was used for segmentation of ab-

normalities on OCT cross-sectional scans. Results. Analysis of test sets revealed sensitivity, specificity, 

precision, and F1-score for detection of subretinal fluid of 0.61, 0.99, 0.99, and 0.76, respectively. For 

detection of RPE abnormalities sensitivity, specificity, precision, and F1-score were 0.14, 0.95, 0.94 and 

0.24, respectively. For detection of leakage point sensitivity, specificity, precision, and F1-score were 0.06, 

1.0, 1.0, and 0.12, respectively. Conclusions. Thus, machine learning demonstrated high potential in 

the OCT-based identification of structural abnormalities associated with acute CSC (neurosensory retina 

detachment and RPE alterations). Topical identification of the leakage point appears to be possible using 

large learning sets.

 � Keywords: central serous chorioretinopathy; optical coherence tomography; artificial intelligence; ma-

chine learning; neural network.
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 � Цель данного исследования состояла в изучении возможности машинного обучения для вы-

явления изолированной отслойки нейроэпителия сетчатки и изменений пигментного эпите-

лия сетчатки как диагностических критериев центральной серозной хориоретинопатии (ЦСХ). 

Материал и методы. В это исследование были включены пациенты с острой ЦСХ, прошедшие 

стандартное офтальмологическое обследование и выполнившие оптическую когерентную томогра-

фию с помощью RTVue-XR Avanti (протокол Angio Retina HD, 6 × 6 мм). Для обучающей разметки 
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был использован en face пласт толщиной 10 мкм в плоскости над пигментным эпителием сетчатки. 

В соответствии с задачами обучения нейронной сети на кросс-секционных сканах были выделены 

три категории патологических изменений: класс 1 — субретинальная жидкость, класс 2 — аномалии 

пигментного эпителия сетчатки и класс 3 — точки просачивания. Количество данных для каждой из 

категорий составило 4800/1400 тренировочных/тестовых изображений для класса 1, 2000/802 для 

класса 2 и 1504/408 для класса 3. Для решения задачи сегментации патологий на ОКТ-сканах была 

использована архитектура, аналогичная Unet. Результаты. Анализ тестовых сетов показал, что 

чувствительность, специфичность, точность и F1-мера в детекции субретинальной жидкости соста-

вили 0,61; 0,99; 0,99 и 0,76 соответственно; для детекции аномалий пигментного эпителия сетчатки 

чувствительность, специфичность, точность и F1-мера равнялись 0,14; 0,95; 0,94 и 0,24 соответ-

ственно; для детекции точки просачивания чувствительность, специфичность, точность и F1-мера 

составили 0,06; 1,0; 1,0 и 0,12 соответственно. Заключение. Таким образом, машинное обучение 

демонстрирует высокий потенциал в идентификации патологических изменений, характерных для 

острой формы ЦСХ (отслойки нейроэпителия сетчатки и альтерации пигментного эпителия сет-

чатки), по данным ОКТ. Топическая индикация точки просачивания представляется возможной на 

больших обучающих сетах.

 � Ключевые слова: центральная серозная хориоретинопатия; оптическая когерентная томография; 

искусственный интеллект; машинное обучение; нейронная сеть.

In ophthalmology in general and in retinology in 

particular, diagnostic approaches are based mainly on 

the technologies related to obtaining and analy zing 

images. However, large volumes of data requiring 

analysis and the complex nature of images analyzed 

can reduce the effectiveness of such diagnostic ap-

proaches. This is most noticeable in screening pro-

grams and primary diagnostics where the need for 

automation and increased accuracy of analysis is the 

highest.

Recently, with the exponential growth in automa-

tion, relatively quick analysis of a large amount of 

data has become possible; this formed the basis of 

artificial intelligence (AI) technologies. AI enables 

the use of a computer to solve problems without us-

ing a strict algorithm. An example of such a task is 

image recognition to identify the displayed objects, 

regardless of their variable non-specific characteris-

tics and the environment in the image. In this case, 

a specific problem is solved by learning during the 

process of the preliminary solving of many similar 

problems, that is, machine learning. Thus, the use of 

AI and machine learning, as methods to solve prob-

lems with the analyses of diagnostic images, could 

revolutionize the diagnosis of ophthalmic diseases. 

An example of AI and machine learning clinical use 

is a screening for the presence of diabetic retinopathy 

using machine analysis of fundus images with high 

accuracy [1].

Optical coherence tomography (OCT) is a tech-

nology of non-invasive in vivo imaging of ocular 

structures with a resolution of up to 5 microns. 

OCT is suitable for the screening approach in 

retinology because it enables rapid and non-inva-

sive diagnoses of all central retina main diseases 

(macu lopathy).

OCT is used to diagnose central serous chorio-

retinopathy (CSС). With the advent of OCT, CSC 

diagnosis has become relatively easy; however, with-

out the use of fluorescein angiography (FA), one 

of the methods of diagnosing CSC is by excluding 

other possible causes of subretinal fluid accumula-

tion. In this case, the analysis of the retinal pigment 

epithelium (RPE) state is crucial, and it remains 

relatively intact in the acute form of this disease [2]. 

A well-known limitation of OCT use for CSC diag-

nosis is the inability to identify the leakage point 

that is necessary not only to verify the diagnosis, but 

also for treatment, if indicated. Nevertheless, several 

studies have found that the identification of a leakage 

point using OCT is possible in at least some CSC 

patients; however, this approach is difficult even for 

an experienced specialist [3–5].

Thus, improvement in the analysis of OCT ima-

ge in CSC represents an important clinical prob-

lem that can be solved using machine learning. 

The potential aim of machine recognition of OCT 

data can be reduced to the tasks that a special-

ist solves in diagnosing CSC on OCT basis: 1) the 

assumption that this patient is suspected to have 

CSC (as per the presence of a detachment with re-

spect to unchanged neuroepithelium, 2) ruling out 

of similar pathological conditions, primarily of wet 

age-related macular degeneration according to the 

degree of RPE changes, and 3) identification of the 

area that is supposed to be responsible for leakage. 
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The possibilities to detect subretinal fluid using ma-

chine segmentation have already been shown [6–8]. 

However, a successful solution of all three problems 

not only enables to classify the OCT data with high 

degree of certainty as relevant to CSC, but also 

creates the basis for a treatment plan, if necessary.

This study aimed to investigate the possibility 

of using machine learning to detect the retinal 

neuroepithelium (RNE) isolated detachment and 

RPE changes as diagnostic criteria for CSC.

MATERIAL AND METHODS
Data collection

The study included patients with acute CSC with 

a duration of ≤6 months with a leakage point verified 

using FA. Exclusion criteria were ascertained recur-

rent episodes in the disease history; signs of chronic 

CSC (marked changes in the pigment epithelium, 

RNE atrophy, diffuse leakage in FA); any concomi-

tant disease of the posterior segment; changes in 

the transparency of the optical media that impede 

adequate visualization of the posterior segment; and 

OCT scan quality less than 7/10.

All patients underwent standard ophthalmologic 

examination and OCT. OCT was performed using 

RTVueXR Avanti (Otovue, Fremont, CA) and in-

cluded a 6-mm three-dimensional (3D) scan (400 re-

peated B-scans with 400 A-scans in each) using the 

Angio Retina HD protocol, centered on the center of 

the macula or the leakage point. In the case of the 

presence of several RNE detachments, which were 

not within one scan limits, each detachment was in-

cluded in a separate scan

Data separation

Structural en face images in the Custome lay-

er (between the segmentation line of the Bruch’s 

membrane at the position of 0 μm, and the segmen-

tation line of the Bruch’s membrane at the position 

of 10 μm) were exported to visualize the detachment 

area and create masks for the spatial distribution of 

the RNE detachment areas, areas of RPE changes 

and, separately, areas of RPE changes, responsible 

for leakage. The area responsible for leakage was 

determined by superimposing the en face image on 

the FA image. Fluorescein angiography was per-

formed as per the standard protocol; images taken 

at 20–35 s were used for analysis.

Creating a learning set

In accordance with the tasks of neural network 

learning, pathological changes were divided into 

following three categories: (1) the presence of sub-

retinal fluid, (2) anomalies of RPE, and (3) lea-

kage points (3). If the category was revealed on 

a 3D scan, the coordinates limiting its area were 

noted. Category 1 area was further refined us-

ing the two-dimensional (2D) mask of the spatial 

distribution of the RNE detachment areas. Thus, 

a 3D OCT image was compared with binary 

ground truth masks (by the number of categories) 

indicating the bounding coordinates of the area of 

interest. Original OCT scan files were read into 

numpy arrays, translated into a logarithmic scale, 

and normalized. The resulting arrays were con-

verted to 2D images, similar to A- and B-scans, 

and compared with the corresponding section of 

the 3D mask. Ten out of 46 OCT images were 

randomly selected as test images and were not 

presented to the neural network during the learn-

ing. The learning set for a separate task included 

images that showed an area of interest. There-

fore, the amount of data differed for each category, 

amounting to 4800/1400 learning/test images for 

class 1, 2000/802 for class 2, and 1504/408 for 

class 3. To increase the power of the learning set, 

the data were augmented; the image sizes could 

be enlarged/reduced by 0.4 from the original size 

and reflected horizontally or rotated by an angle 

of up to 30°. The size of the images transferred 

into the model was 256 × 256 pixels.

Statistical methods

The models were trained to solve the binary segmen-

tation problems; therefore, in order to assess the quality 

of the algorithm, we used an error matrix (TP – true 

positive, TN – true negative, FP –  false positive, FN – 

false negative) and the indicators based on it, namely 

sensitivity, specificity, accuracy, F1 measure.

Sensitivity = TP/P

Specificity = TN/N

Accuracy = TP/(TP + FP)

F1 measure = 2TP/(2TP + FP + FN)

The receiver operating characteristic (ROC) and 

area under curve metrics were not applicable due to 

significant class imbalance. The ROC curve indicates 

the quality of classification in the coordinates of sen-

sitivity and specificity.

When analyzing the images, two main approaches 

were used, classification and segmentation, corre-

sponding to the analysis of the array of scans and 

each individual image.

Neural network architecture

To solve the problem of lesion segmentation on 

OCT scans, we chose an architecture similar to 
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Indicators Sensitivity Specificity Accuracy F1�measure

Subretinal fluid 0.67 0.98 0.70 0.68

RPE abnormalities 0.51 0.99 0.13 0.21

Leakage points 0.60 0.99 0.05 0.09

Note. RPE – retinal pigment epithelium.

Table 1 / Таблица 1

Statistical indices of neural network working efficacy upon B-scan segmentation
Статистические показатели эффективности работы нейронной сети по сегментации В-сканов

Unet [9] that is widely used for medical data analy-

sis. A neural network consists of four convolution 

layers (32–32–64–64 filters with 3 × 3 pixels in 

size), alternating with subsampling operations, and 

four subsequent convolution layers, alternating with 

upsampling operations (64–64–64–64 filters with 

3 × 3 pixels in size). After the first operation, increas-

ing the discretization, the information from the initial 

convolution layers is added to characteristics extract-

ed in the previous layer. The process of segmentation 

is completed with two additional convolution layers 

(32–1 filters with a size of 3 × 3 pixels). ReLU, the 

output sigmoid layer, is used in the inner layers as 

an activation function. The total number of trained 

network parameters is 305 K.

RESULTS
The study included 40 patients (46 eyes), the aver-

age age of the patients was 44.8 ± 10.8 years, and 

there were 34 men and 6 women. A total of 46 indi-

vidual 3D scans were used, each of which was con-

sidered as a separate case.

For each of the tasks assigned, a neural network 

was trained, highlighting pathological areas in im-

ages of A- and B-scans. The result of the network 

is a two-dimensional mask with a size similar to the 

input data (256 × 256 pixels). The mask is a map 

of the probabilities of assigning each individual pixel 

to the target class. To calculate the quality of the 

algorithm operation, the output mask was binarized 

by the value of 0.5, where all pixels with probabilities 

greater than the specified were taken as positively 

classified.

The quality of the model’s work was estimated by 

the scan as a whole, that is, B-scans were extracted 

from the OCT data that were individually transferred 

to the model for analysis; thereafter, the predictions 

obtained were assembled in a 3D volume and com-

pared with a 3D mask. Table 1 represents the re-

sults averaged over the entire test set. It should be 

remembered that the marking was not pixel-by-pixel 

and the mask approximately limited the pathological 

area (bounding box marking). Moreover, the area of 

interest was approximated to a rectangular one that, 

in the process of learning and testing the models, led 

to errors in segmentation (Fig. 1).

In addition, we evaluated the quality of image clas-

sification for the entire set of B-scans; each B-scan 

was assigned a positive class if at least 5 pixels that 

were classified as pathological were found in it. Cat-

egories obtained for the sections were compared with 

the initial data (B-scan was considered positive if the 

mask contained positively marked pixels). The results 

are presented in Table 2 (Fig. 2).

DISCUSSION
This study analyzes the capabilities of machine 

learning to classify retinal changes in acute un-

complicated CSC. The neural network used, and 

the learning algorithm enabled us to achieve high 

sensitivity and specificity in the diagnosis of RNE 

detachment both within each individual B-scan and 

in the set of B-scans. Thus, the problem of mapping 

the distribution of subretinal fluid can be considered 

successfully solved. In the indication of RPE anoma-

lies, a more difficult task, the neural network showed 

slightly worse performance, primarily due to reduced 

sensitivity indicators when analyzing the set of scans, 

although the detection of noticeable RPE alteration 

(for example, high detachments) is performed effi-

ciently and with high specificity. Despite the fact that 

the totality of these diagnostic algorithms can form 

the basis of the primary diagnostics of CSC using 

OCT, the current state of the model does not allow 

the use of all the algorithm elements with equal ef-

ficiency.

There are two main reasons for reduced system 

performance when analyzing RPE changes, including 

the difficulties of accurate marking and the limited 

representation of this class of changes in the learn-

ing sets. We believe that the latter is most important. 

With a high prevalence in the population, only few 

patients were suitable for training the neural network, 

as indicated in the inclusion and exclusion criteria. 
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Table 2 / Таблица 2

Statistical indices of neural network working efficacy upon B-scan set classification
Статистические показатели эффективности работы нейронной сети по классификации совокупности В-сканов

0 0 0
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Fig. 1. Example of detection of subretinal fluid within an individual B-scan by the taught-in neural network: 

а – a raw cross-sectional OCT scan; b – resultant image of detection of subretinal fluid accumula-

tion area; c – distribution of a probabilistic characteristic of subretinal fluid presence

Рис. 1. Пример детекции обученной нейронной сетью субретинальной жидкости на индивидуальном 

В-скане: а — исходный В-скан; b — результат распознавания зоны скопления субретиналь-

ной жидкости; c — распределение вероятностной характеристики наличия субретинальной 

жидкости

Fig. 2. Representative example of subretinal fluid detection within a stack of B-scans by the taught-in neural 

network: а – en face image demonstrating the subretinal fluid distribution; b – resultant image after 

detection and mapping of subretinal fluid from a stack of B-scans; c – distribution of a probabilistic 

characteristic of subretinal fluid presence on an individual B-scan. The dashed line represents a posi-

tion of cross-sectional scan

Рис. 2. Репрезентативный пример детекции субретинальной жидкости на совокупности В-сканов об-

ученной нейронной сетью: а — анфас-изображение, демонстрирующее распределение субрети-

нальной жидкости; b — результат распознавания и картирования зоны распределения субрети-

нальной жидкости в совокупности В-сканов; c — распределение вероятностной характеристики 

наличия субретинальной жидкости на индивидуальном В-скане. Положение скана отмечено 

пунктирной линией

Indicators Sensitivity Specificity Accuracy F1�measure

Subretinal fluid 0.61 0.99 0.99 0.76

RPE abnormalities 0.14 0.95 0.94 0.24

Leakage points 0.06 1.0 1.0 0.12

Note. RPE – retinal pigment epithelium.
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High requirements for uniformity and resolution of 

scans also limit the input flow of patients. In addition, 

some patients had to be excluded from the learning set 

for subsequent use in the test. Thus, only approximate-

ly 40 individual patients were included for learning.

The problem of large data arrays for learning is 

well known in the field of AI. In previously published 

works that have studied the use of machine learning 

technologies for analyzing OCT data, the learning 

sets include up to 100,000 individual scans. The total 

number of scans in our learning set was more than 

16,000. However, the representation of the analyzed 

characteristics was uneven. If, according to rough 

estimates, 40%–50% of B-scans included RNE de-

tachment, the RPE changes were observed in maxi-

mum 15% of the scans, and the leakage point was 

represented in no more than 5% of the scans. This 

reflects the results of the neural network in identi-

fying these types of changes. Thus, 10 times more 

individual cases may be required for adequate training 

to enable accurate identification of the leakage point.

Another problem mentioned above is the accuracy 

of mapping the changes. It was not possible for a 

limited group of specialists to mark each individual 

B-scan from a large data array; therefore, the use of 

a coordinate system (bounding box marking) is most 

appropriate. However, this leads to the fact that sig-

nificant representation in pathological areas belongs 

to normal areas or those non-belonging to this type 

of pathology. This becomes apparent when it is con-

sidered that the marking area is a rectangle, and any 

pathological area has an irregular shape. Although 

this problem cannot be solved directly, by improving 

the marking, increase in a learning set can overcome 

this limitation. Moreover, on a large set, this can 

give advantages in learning because the system will 

become “familiar” with “imperfect” data.

Despite the fact that the study used a small learn-

ing set, its results show the prospects of using AI in 

the field of OCT diagnostics in ophthalmology. More-

over, the logical diagnostic approaches used in our 

work demonstrate their applicability, at least within 

the framework of CSC and, possibly, similar diseases.

The algorithm described is based on the assess-

ment of the entire data array of a 3D scan, not just 

the individual B-scan; this is important for the differ-

ential diagnoses and the diagnosis in asymptomatic 

patients. The absence of significant changes outside 

the detachment of the RNE is significant for the dif-

ferential diagnosis because with other maculopathies, 

the RNE and RPE outside the detachment of RNE 

can show various pathological changes. Analysis of 

the “raw” file enables us to exclude the human fac-

tor input at the stage before data processing with 

neural network. This also enables us to rely on the 

identification of areas responsible for leakage because 

potentially, such an area can be localized in any site 

of the RNE detachment.

We know that 3D scanning is an option for OCT 

option, using which it is possible to form an idea on 

the state of the entire macula based on one scan. 

However, for a long time, when evaluating a large 

fundus area, there was a loss in image quality of the 

cross-sectional tissues, and ultrastructural analysis 

of the condition of the RNE and RPE on such scans 

could not be performed adequately. During a couple 

of years, two events in the process of OCT evolution 

changed the situation, namely a multiple increase in 

the scanning speed and the use of motion artifact 

correction technologies. All this led to an increase in 

the resolution of each individual cross-sectional scan 

within the 3D scan to values that ensure the iden-

tification of minimal changes in RPE, for example, 

characteristic of the leakage point in CSC. In ad-

dition, this enabled us to reduce the step between 

successive cross-sectional scans and minimize the 

likelihood that pathological changes will be localized 

between the scans. Thus, the analysis of the retina 

and RPE with high resolution within the three-di-

mensional scan is an additional, however not fully 

appreciated, option of OCT angiography, which fits 

well with the concept of machine learning.

The strength of this study is in the fact that, in 

addition to the direct task of improving the CSC di-

agnostics, it demonstrates the possibility of solving 

similar classification problems to identify the source 

of exudation in other maculopathies. For example, 

this approach can be implemented for planning laser 

interventions in case of diabetic macular edema asso-

ciated with leakage from a microaneurysm. The work 

of the classifier for these cases will have a similar al-

gorithm and will include 1) detection of a pathological 

area, 2) identification of suspected microaneurysms, 

and 3) identification of microaneurysms responsible 

for leakage and serving as targets for laser coagula-

tion. In addition, in this study, learning and test sets 

were obtained in different patients; therefore, there 

was no duplication of images in the learning process 

and the experiment.

This study has certain limitations. First, we did 

not compare the diagnostic capabilities of the system 

for a mixed sample that included other diseases in 

addition to CSC. This issue is important for direct 

clinical use; however, this needs to be addressed in a 

separate study. Second, for CSC diagnosis, the state 

of the choroid that is assessed based on the morpho-
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logical changes, internal structure, and thickness, is 

crucial. These data could be used in primary (and 

differential) diagnosis because an increase in the vas-

cularity index and choroidal thickness enables us to 

rule out several other maculopathies. This increases 

the accuracy of the identification of the leakage point 

that is usually associated with local thickening of cho-

roidal vessels. Although we do not know what role 

the analysis of the choroid played in our algorithm, 

a three-dimensional scan based on averaging of the 

four scans may not be sufficient to fully analyze some 

cases using spectral OCT data because this variant 

of OCT is limited by the depth of penetration of the 

scanning beam. Third, a relatively small number of 

patients were enrolled in the study. As in many simi-

lar studies, this drawback is partially offset by image 

fragmentation. However, this imposes restrictions on 

the extrapolation of the results to the entire spectrum 

of CSC that, in general (unlike the acute form), is a 

rather polymorphic pathology.

CONCLUSION
This study demonstrated high potential of AI tech-

nology and computer-aided learning in diagnosis of 

individual morphological characteristics of CSC based 

on the data of 3D OCT scanning. Among the main 

morphological changes, RNE detachments and RPE 

alteration are most accurately detected both within 

the individual B-scans and in the en face image. 

Detection of the leakage point by OCT data based 

on machine learning is possible; however, adequate 

operation of such an algorithm requires a large array 

of learning data.
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