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<> The aim of the present study was to examine the potential of machine learning for identification of
isolated neurosensory retina detachment and retinal pigment epithelium (RPE) alterations as diagnostic
criteria of central serous chorioretinopathy (CSC). Material and methods. Patients with acute CSC
in whom a standard ophthalmic examination and optical coherence tomography (OCT) using RTVue-XR
Avanti (Angio Retina HD scan protocol, 6 x 6 mm) was performed were included in the study. 10-pm
en face slab above the RPE layer was used to create ground truth masks. Learning aims were defined
as identification of 3 classes of structural abnormalities on OCT cross-sectional scans: class 1 — sub-
retinal fluid, class 2 — RPE abnormalities, and class 3 — leakage points. Data for each of the 3 classes
included: 4800/1400 training/test images for class 1, 2000/802 training/test images for class 2, and
1504/408 training/test images for class 3. Unet-similar architecture was used for segmentation of ab-
normalities on OCT cross-sectional scans. Results. Analysis of test sets revealed sensitivity, specificity,
precision, and Fl-score for detection of subretinal fluid of 0.61, 0.99, 0.99, and 0.76, respectively. For
detection of RPE abnormalities sensitivity, specificity, precision, and Fl-score were 0.14, 0.95, 0.94 and
0.24, respectively. For detection of leakage point sensitivity, specificity, precision, and F1-score were 0.06,
1.0, 1.0, and 0.12, respectively. Conclusions. Thus, machine learning demonstrated high potential in
the OCT-based identification of structural abnormalities associated with acute CSC (neurosensory retina
detachment and RPE alterations). Topical identification of the leakage point appears to be possible using
large learning sets.

<> Keywords: central serous chorioretinopathy; optical coherence tomography; artificial intelligence; ma-
chine learning; neural network.

IIIIJKVCCTBEHI!bIﬁ WHTEJUIEKT 1 MALUIMHHOE ObYYEHUE B ANATHOCTUKE
UEHTPAJIbHOW CEPO3HOW XOPWOPETUHONATAN HA OCHOBAHWUK ONTUYECKON
KOTEPEHTHON TOMOIPA®IN
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<> Leav naHHOro HCC/EI0BAHUS COCTOsIIA B M3YUYEHHH BO3MOXKHOCTH MAlIMHHOTO OGY4YeHHs JJIsi Bbi-
SIBJEHUS M30JIHPOBAHHON OTCJOHKH HEHPOSMUTEJUST CeTYaTKH W M3MEeHEHWH TMHUIMEHTHOrO 3MHUTe-
JIUSI CEeTUaTKH KakK JHAarHOCTHYECKHX KPHUTEpPHEB IleHTpasbHOH ceposHoit xopuopetnHonatuu (LICX).
Mamepuana u memodet. B 370 uccienopanue Oblid BKJOUeHbl natdenTsl ¢ octpoit LICX, npoweauue
cTanjgapTHoe odTajbMoJioruieckoe 00C/e/l0BaHHE U BLITIOJHUBIINE ONTHYECKYI0 KOT€PEHTHYIO TOMOTrpa-
duio ¢ nomotibio RTVue-XR Avanti (mpotokos Angio Retina HD, 6 x 6 mm). Jlas oOyuyatolieil pasameTku
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Obla1 McnoJab3oBaH en face nuact ToswuHoi 10 MKM B MJIOCKOCTH HaJl MUIMEHTHBIM SMHUTEJIUEM CETYATKH.
B coorBeTcTBHHU ¢ 3amauamMu 0OydeHHs] HEHPOHHOH CeTH Ha KPOCC-CEeKIMOHHBIX CKaHaX OLIJIH BbIJIeJeHbI
TPH KaTeropuu NaToJIOrMUeCKUX M3MEHeHUH: Kaace | — cyOpeTHHabHAS )KUJIKOCTh, KJacC 2 — aHOMaJIuK
MUTMEHTHOTO 3MUTEJIUS CETUATKH U KJacC 3 — TOUKM npocauuBaHus. KosnuecTBO JAHHBIX I/ KAXKJI0H U3
kateropuii cocrasuio 4800/1400 TpenupoBoUHbIX/TeCTOBLIX H306pakeH il ans Kaacca 1, 2000/802 nist
kaacca 2 u 1504/408 nast kaacca 3. JLst pelienus 3agauu cermentaiuu naroaorui na OKT-ckanax 6bina
MCI0JIb30BaHa apxuTeKTypa, aHajoruudasi Unet. Pe3dyaomamot. AHann3 TeCTOBBIX CETOB MOKAa3aJ, YTO
YYBCTBHUTEJNbHOCTD, CIIEH(UIHOCTD, TOUHOCTb U F1-Mepa B feTekuun cybpeTHHANbHOH KHAKOCTH COCTa-
suJin 0,61; 0,99; 0,99 1 0,76 cCOOTBETCTBEHHO; JJI51 IETEKLIMH aHOMAJIMH TUTMEHTHOTO 3MTUTEJHUS CeTUATKH
UyBCTBUTEJbHOCTD, CHELUPUIHOCTb, TOUHOCTL U Fl-Mepa paBusiuch 0,14; 0,95; 0,94 u 0,24 coorser-
CTBEHHO; JUIsl IETEKIIMH TOYKU MPOCcauMBaHUst YYBCTBUTEJNBHOCTh, CHEUPUUIHOCTb, TOUHOCTL U Fl-Mepa
cocrauau 0,06; 1,0; 1,0 u 0,12 coorBercrBenHo. 3akarouenue. Takum o6pa3om, MalluHHOe 0OydeHHe
JIEMOHCTPHPYET BbICOKUH MOTEHLMAJ B HAECHTH(PHKALMK MaTOJOMMUECKHMX U3MEHEHHH, XapaKTepHbIX J1J1s1
octpoit popMbl LICX (0TCJOHKHK HeHpOSMHUTENHS CeTYaTKH H aJibTepally MUTMEHTHOrO 3MUTEJHUsT CeT-
uyaTku), no gaHHbiM OKT. Tornnyeckas MHAMKAIUS TOUKH MPOCAUHBAHUS TIPEJCTABJSETCA BO3MOXKHON Ha
60JbIIMX 0OyUYaAIOUIUX CeTax.

<> Katouesole crosa: 1ieHTpaJsibHasi cepo3Hasi XOPHOPETHHOMATH S, ONITHYECKasi KorepeHTHasi ToMmorpadusi;

HCKYCCTBGHHbIﬁ HHTEJIJIEKT; MallMHHOE OéyquHG; HeIU/IpOHHaﬂ CETh.

In ophthalmology in general and in retinology in
particular, diagnostic approaches are based mainly on
the technologies related to obtaining and analyzing
images. However, large volumes of data requiring
analysis and the complex nature of images analyzed
can reduce the effectiveness of such diagnostic ap-
proaches. This is most noticeable in screening pro-
grams and primary diagnostics where the need for
automation and increased accuracy of analysis is the
highest.

Recently, with the exponential growth in automa-
tion, relatively quick analysis of a large amount of
data has become possible; this formed the basis of
artificial intelligence (AI) technologies. Al enables
the use of a computer to solve problems without us-
ing a strict algorithm. An example of such a task is
image recognition to identify the displayed objects,
regardless of their variable non-specific characteris-
tics and the environment in the image. In this case,
a specific problem is solved by learning during the
process of the preliminary solving of many similar
problems, that is, machine learning. Thus, the use of
Al and machine learning, as methods to solve prob-
lems with the analyses of diagnostic images, could
revolutionize the diagnosis of ophthalmic diseases.
An example of Al and machine learning clinical use
is a screening for the presence of diabetic retinopathy
using machine analysis of fundus images with high
accuracy [1].

Optical coherence tomography (OCT) is a tech-
nology of non-invasive in vivo imaging of ocular
structures with a resolution of up to 5 microns.
OCT is suitable for the screening approach in

retinology because it enables rapid and non-inva-
sive diagnoses of all central retina main diseases
(maculopathy).

OCT is used to diagnose central serous chorio-
retinopathy (CSC). With the advent of OCT, CSC
diagnosis has become relatively easy; however, with-
out the use of fluorescein angiography (FA), one
of the methods of diagnosing CSC is by excluding
other possible causes of subretinal fluid accumula-
tion. In this case, the analysis of the retinal pigment
epithelium (RPE) state is crucial, and it remains
relatively intact in the acute form of this disease [2].
A well-known limitation of OCT use for CSC diag-
nosis is the inability to identify the leakage point
that is necessary not only to verify the diagnosis, but
also for treatment, if indicated. Nevertheless, several
studies have found that the identification of a leakage
point using OCT is possible in at least some CSC
patients; however, this approach is difficult even for
an experienced specialist [3—5].

Thus, improvement in the analysis of OCT ima-
ge in CSC represents an important clinical prob-
lem that can be solved using machine learning.
The potential aim of machine recognition of OCT
data can be reduced to the tasks that a special-
ist solves in diagnosing CSC on OCT basis: 1) the
assumption that this patient is suspected to have
CSC (as per the presence of a detachment with re-
spect to unchanged neuroepithelium, 2) ruling out
of similar pathological conditions, primarily of wet
age-related macular degeneration according to the
degree of RPE changes, and 3) identification of the
area that is supposed to be responsible for leakage.
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The possibilities to detect subretinal fluid using ma-
chine segmentation have already been shown [6—8].
However, a successful solution of all three problems
not only enables to classify the OCT data with high
degree of certainty as relevant to CSC, but also
creates the basis for a treatment plan, if necessary.

This study aimed to investigate the possibility
of using machine learning to detect the retinal
neuroepithelium (RNE) isolated detachment and
RPE changes as diagnostic criteria for CSC.

MATERIAL AND METHODS

Data collection

The study included patients with acute CSC with
a duration of <6 months with a leakage point verified
using FA. Exclusion criteria were ascertained recur-
rent episodes in the disease history; signs of chronic
CSC (marked changes in the pigment epithelium,
RNE atrophy, diffuse leakage in FA); any concomi-
tant disease of the posterior segment; changes in
the transparency of the optical media that impede
adequate visualization of the posterior segment; and
OCT scan quality less than 7/10.

All patients underwent standard ophthalmologic
examination and OCT. OCT was performed using
RTVueXR Avanti (Otovue, Fremont, CA) and in-
cluded a 6-mm three-dimensional (3D) scan (400 re-
peated B-scans with 400 A-scans in each) using the
Angio Retina HD protocol, centered on the center of
the macula or the leakage point. In the case of the
presence of several RNE detachments, which were
not within one scan limits, each detachment was in-
cluded in a separate scan

Data separation

Structural en face images in the Custome lay-
er (between the segmentation line of the Bruch’s
membrane at the position of 0 pm, and the segmen-
tation line of the Bruch’s membrane at the position
of 10 pm) were exported to visualize the detachment
area and create masks for the spatial distribution of
the RNE detachment areas, areas of RPE changes
and, separately, areas of RPE changes, responsible
for leakage. The area responsible for leakage was
determined by superimposing the en face image on
the FA image. Fluorescein angiography was per-
formed as per the standard protocol; images taken
at 20—35 s were used for analysis.

Creating a learning set

In accordance with the tasks of neural network
learning, pathological changes were divided into
following three categories: (1) the presence of sub-

retinal fluid, (2) anomalies of RPE, and (3) lea-
kage points (3). If the category was revealed on
a 3D scan, the coordinates limiting its area were
noted. Category | area was further refined us-
ing the two-dimensional (2D) mask of the spatial
distribution of the RNE detachment areas. Thus,
a 3D OCT image was compared with binary
groundtruthmasks (by the number of categories)
indicating the bounding coordinates of the area of
interest. Original OCT scan files were read into
numpy arrays, translated into a logarithmic scale,
and normalized. The resulting arrays were con-
verted to 2D images, similar to A- and B-scans,
and compared with the corresponding section of
the 3D mask. Ten out of 46 OCT images were
randomly selected as test images and were not
presented to the neural network during the learn-
ing. The learning set for a separate task included
images that showed an area of interest. There-
fore, the amount of data differed for each category,
amounting to 4800/1400 learning/test images for
class 1, 2000/802 for class 2, and 1504/408 for
class 3. To increase the power of the learning set,
the data were augmented; the image sizes could
be enlarged/reduced by 0.4 from the original size
and reflected horizontally or rotated by an angle
of up to 30° The size of the images transferred
into the model was 256 x 256 pixels.

Statistical methods

The models were trained to solve the binary segmen-
tation problems; therefore, in order to assess the quality
of the algorithm, we used an error matrix (TP — true
positive, TN — true negative, FP — false positive, FN —
false negative) and the indicators based on it, namely
sensitivity, specificity, accuracy, F1 measure.

Sensitivity = TP/P

Specificity = TN/N

Accuracy = TP/(TP + FP)

F1 measure = 2TP/(2TP + FP + FN)

The receiver operating characteristic (ROC) and
area under curve metrics were not applicable due to
significant class imbalance. The ROC curve indicates
the quality of classification in the coordinates of sen-
sitivity and specificity.

When analyzing the images, two main approaches
were used, classification and segmentation, corre-
sponding to the analysis of the array of scans and
each individual image.

Neural network architecture
To solve the problem of lesion segmentation on
OCT scans, we chose an architecture similar to
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Unet [9] that is widely used for medical data analy-
sis. A neural network consists of four convolution
layers (32—32—64—64 filters with 3 x 3 pixels in
size), alternating with subsampling operations, and
four subsequent convolution layers, alternating with
upsampling operations (64—64—64—64 filters with
3 x 3 pixels in size). After the first operation, increas-
ing the discretization, the information from the initial
convolution layers is added to characteristics extract-
ed in the previous layer. The process of segmentation
is completed with two additional convolution layers
(32—1 filters with a size of 3 x 3 pixels). ReLU, the
output sigmoid layer, is used in the inner layers as
an activation function. The total number of trained
network parameters is 305 K.

RESULTS

The study included 40 patients (46 eyes), the aver-
age age of the patients was 44.8 + 10.8 years, and
there were 34 men and 6 women. A total of 46 indi-
vidual 3D scans were used, each of which was con-
sidered as a separate case.

For each of the tasks assigned, a neural network
was trained, highlighting pathological areas in im-
ages of A- and B-scans. The result of the network
is a two-dimensional mask with a size similar to the
input data (256 x 256 pixels). The mask is a map
of the probabilities of assigning each individual pixel
to the target class. To calculate the quality of the
algorithm operation, the output mask was binarized
by the value of 0.5, where all pixels with probabilities
greater than the specified were taken as positively
classified.

The quality of the model’s work was estimated by
the scan as a whole, that is, B-scans were extracted
from the OCT data that were individually transferred
to the model for analysis; thereafter, the predictions
obtained were assembled in a 3D volume and com-
pared with a 3D mask. Table | represents the re-
sults averaged over the entire test set. It should be
remembered that the marking was not pixel-by-pixel
and the mask approximately limited the pathological

Table 1/ Tabmmya 1

area (bounding box marking). Moreover, the area of
interest was approximated to a rectangular one that,
in the process of learning and testing the models, led
to errors in segmentation (Fig. 1).

In addition, we evaluated the quality of image clas-
sification for the entire set of B-scans; each B-scan
was assigned a positive class if at least 5 pixels that
were classified as pathological were found in it. Cat-
egories obtained for the sections were compared with
the initial data (B-scan was considered positive if the
mask contained positively marked pixels). The results
are presented in Table 2 (Fig. 2).

DISCUSSION

This study analyzes the capabilities of machine
learning to classify retinal changes in acute un-
complicated CSC. The neural network used, and
the learning algorithm enabled us to achieve high
sensitivity and specificity in the diagnosis of RNE
detachment both within each individual B-scan and
in the set of B-scans. Thus, the problem of mapping
the distribution of subretinal fluid can be considered
successfully solved. In the indication of RPE anoma-
lies, a more difficult task, the neural network showed
slightly worse performance, primarily due to reduced
sensitivity indicators when analyzing the set of scans,
although the detection of noticeable RPE alteration
(for example, high detachments) is performed effi-
ciently and with high specificity. Despite the fact that
the totality of these diagnostic algorithms can form
the basis of the primary diagnostics of CSC using
OCT, the current state of the model does not allow
the use of all the algorithm elements with equal ef-
ficiency.

There are two main reasons for reduced system
performance when analyzing RPE changes, including
the difficulties of accurate marking and the limited
representation of this class of changes in the learn-
ing sets. We believe that the latter is most important.
With a high prevalence in the population, only few
patients were suitable for training the neural network,
as indicated in the inclusion and exclusion criteria.

Statistical indices of neural network working efficacy upon B-scan segmentation
CraTucTuyeckue nokasatenu ap(hekTMBHOCTH PaboTbl HEMPOHHON CETH NO cerMenTayuu B-ckaHos

Indicators Sensitivity Specificity Accuracy F1-measure
Subretinal fluid 0.67 0.98 0.70 0.68
RPE abnormalities 0.51 0.99 013 0.21
Leakage points 0.60 0.99 0.05 0.09

Note. RPE — retinal pigment epithelium.
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Fig.1. Example of detection of subretinal fluid within an individual B-scan by the taught-in neural network:
a — a raw cross-sectional OCT scan; b — resultant image of detection of subretinal fluid accumula-
tion area; ¢ — distribution of a probabilistic characteristic of subretinal fluid presence

Puc.1. Ilpumep nerekuuu oOyueHHOH HEHPOHHON CETbIO CyOpeTHHAJBHON XKHAKOCTH HA UHAHBUAYaJbHOM
B-ckane: a — wucxoauslit B-ckan; b — pesynbTar pacrno3naBanus 30Hbl CKOMJIEeHUs CyOpeTHHAb-
HOH >KMJKOCTH; ¢ — pacrpejeJ/ieH1ie BEPOSTHOCTHON XapaKTePUCTHKH HaJu4yus CyOpeTHHAJbHON
JKMIKOCTH

0 0
50
100 %0
150 100
200
250 150
300 200
350
250
0 100 200 300 0 50 100 150 200 250
a b c

Fig.2. Representative example of subretinal fluid detection within a stack of B-scans by the taught-in neural
network: a — en face image demonstrating the subretinal fluid distribution; & — resultant image after
detection and mapping of subretinal fluid from a stack of B-scans; ¢ — distribution of a probabilistic
characteristic of subretinal fluid presence on an individual B-scan. The dashed line represents a posi-
tion of cross-sectional scan

Puc. 2. PenpeseHTaTHUBHBIN NpUMEp JIeTeKUHH CyOpeTHHANBLHON XKHIKOCTH Ha COBOKYMHOCTH B-ckaHoB 06-
yUeHHOH HelpOHHOH ceThlo: @ — aHdac-u3o6pakeHue, 1EMOHCTPHUPYIOLLee pacrpeesneHne cyOpeTu-
HaJILHOM XKHUJKOCTH; b — pe3y/bTaT pacro3HaBaHUs U KapTHPOBAHUs 30HBI pacrpesieieHust CyOpeTH-
HaJIbHOM XKUJKOCTH B COBOKYIHOCTH B-CcKaHOB; ¢ — pacripe/iesieHie BEPOSTHOCTHOH XapaKTepUCTHKU
HaJMMuMsl cyOpeTHHAJNbLHON KUJIKOCTH Ha MHAMBMAYyasbHoM B-ckane. [TosokeHne ckaHa oTMedeHO
NYHKTHPHOH JIMHUEH

Table 2 / Tabmnua 2

Statistical indices of neural network working efficacy upon B-scan set classification
CraTucTMYECKME noKa3aTenu 3(h(heKTUBHOCTU PaboTbl HEHPOHHON CETH NO KnaccudMkaLnuM coBOKYNHOCTH B-ckaHoB

Indicators Sensitivity Specificity Accuracy F1-measure
Subretinal fluid 0.61 0.99 0.99 0.76
RPE abnormalities 0.14 0.95 0.94 0.24
Leakage points 0.06 1.0 1.0 012

Note. RPE — retinal pigment epithelium.
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High requirements for uniformity and resolution of
scans also limit the input flow of patients. In addition,
some patients had to be excluded from the learning set
for subsequent use in the test. Thus, only approximate-
ly 40 individual patients were included for learning.

The problem of large data arrays for learning is
well known in the field of Al. In previously published
works that have studied the use of machine learning
technologies for analyzing OCT data, the learning
sets include up to 100,000 individual scans. The total
number of scans in our learning set was more than
16,000. However, the representation of the analyzed
characteristics was uneven. If, according to rough
estimates, 40%—50% of B-scans included RNE de-
tachment, the RPE changes were observed in maxi-
mum 15% of the scans, and the leakage point was
represented in no more than 5% of the scans. This
reflects the results of the neural network in identi-
fying these types of changes. Thus, 10 times more
individual cases may be required for adequate training
to enable accurate identification of the leakage point.

Another problem mentioned above is the accuracy
of mapping the changes. It was not possible for a
limited group of specialists to mark each individual
B-scan from a large data array; therefore, the use of
a coordinate system (bounding box marking) is most
appropriate. However, this leads to the fact that sig-
nificant representation in pathological areas belongs
to normal areas or those non-belonging to this type
of pathology. This becomes apparent when it is con-
sidered that the marking area is a rectangle, and any
pathological area has an irregular shape. Although
this problem cannot be solved directly, by improving
the marking, increase in a learning set can overcome
this limitation. Moreover, on a large set, this can
give advantages in learning because the system will
become “familiar” with “imperfect” data.

Despite the fact that the study used a small learn-
ing set, its results show the prospects of using Al in
the field of OCT diagnostics in ophthalmology. More-
over, the logical diagnostic approaches used in our
work demonstrate their applicability, at least within
the framework of CSC and, possibly, similar diseases.

The algorithm described is based on the assess-
ment of the entire data array of a 3D scan, not just
the individual B-scan; this is important for the differ-
ential diagnoses and the diagnosis in asymptomatic
patients. The absence of significant changes outside
the detachment of the RNE is significant for the dif-
ferential diagnosis because with other maculopathies,
the RNE and RPE outside the detachment of RNE
can show various pathological changes. Analysis of
the “raw” file enables us to exclude the human fac-

tor input at the stage before data processing with
neural network. This also enables us to rely on the
identification of areas responsible for leakage because
potentially, such an area can be localized in any site
of the RNE detachment.

We know that 3D scanning is an option for OCT
option, using which it is possible to form an idea on
the state of the entire macula based on one scan.
However, for a long time, when evaluating a large
fundus area, there was a loss in image quality of the
cross-sectional tissues, and ultrastructural analysis
of the condition of the RNE and RPE on such scans
could not be performed adequately. During a couple
of years, two events in the process of OCT evolution
changed the situation, namely a multiple increase in
the scanning speed and the use of motion artifact
correction technologies. All this led to an increase in
the resolution of each individual cross-sectional scan
within the 3D scan to values that ensure the iden-
tification of minimal changes in RPE, for example,
characteristic of the leakage point in CSC. In ad-
dition, this enabled us to reduce the step between
successive cross-sectional scans and minimize the
likelihood that pathological changes will be localized
between the scans. Thus, the analysis of the retina
and RPE with high resolution within the three-di-
mensional scan is an additional, however not fully
appreciated, option of OCT angiography, which fits
well with the concept of machine learning.

The strength of this study is in the fact that, in
addition to the direct task of improving the CSC di-
agnostics, it demonstrates the possibility of solving
similar classification problems to identify the source
of exudation in other maculopathies. For example,
this approach can be implemented for planning laser
interventions in case of diabetic macular edema asso-
ciated with leakage from a microaneurysm. The work
of the classifier for these cases will have a similar al-
gorithm and will include 1) detection of a pathological
area, 2) identification of suspected microaneurysmes,
and 3) identification of microaneurysms responsible
for leakage and serving as targets for laser coagula-
tion. In addition, in this study, learning and test sets
were obtained in different patients; therefore, there
was no duplication of images in the learning process
and the experiment.

This study has certain limitations. First, we did
not compare the diagnostic capabilities of the system
for a mixed sample that included other diseases in
addition to CSC. This issue is important for direct
clinical use; however, this needs to be addressed in a
separate study. Second, for CSC diagnosis, the state
of the choroid that is assessed based on the morpho-
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logical changes, internal structure, and thickness, is
crucial. These data could be used in primary (and
differential) diagnosis because an increase in the vas-
cularity index and choroidal thickness enables us to
rule out several other maculopathies. This increases
the accuracy of the identification of the leakage point
that is usually associated with local thickening of cho-
roidal vessels. Although we do not know what role
the analysis of the choroid played in our algorithm,
a three-dimensional scan based on averaging of the
four scans may not be sufficient to fully analyze some
cases using spectral OCT data because this variant
of OCT is limited by the depth of penetration of the
scanning beam. Third, a relatively small number of
patients were enrolled in the study. As in many simi-
lar studies, this drawback is partially offset by image
fragmentation. However, this imposes restrictions on
the extrapolation of the results to the entire spectrum
of CSC that, in general (unlike the acute form), is a
rather polymorphic pathology.

CONCLUSION

This study demonstrated high potential of Al tech-
nology and computer-aided learning in diagnosis of
individual morphological characteristics of CSC based
on the data of 3D OCT scanning. Among the main
morphological changes, RNE detachments and RPE
alteration are most accurately detected both within
the individual B-scans and in the en face image.
Detection of the leakage point by OCT data based
on machine learning is possible; however, adequate
operation of such an algorithm requires a large array
of learning data.
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