Telemedicine in ophthalmology. Part 2. “special teleophthalmology”

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In recent years, telemedicine (TM) has been gradually introduced into ophthalmology in the form of teleophthalmology (TO), because most of the eye diseases can be photographed and transmitted via Internet. The most wide development of TO has involved the field of diabetic retinopathy (DR) diagnosis, primarily due to the high prevalence of diabetes mellitus in the world. Examples of the well-established operation of remote DR screening centers exist in different countries of the world. There are many studies published, which compare a remote examination with a personal one, and according to their data, TO screening is no worse, than traditional screening. In addition to DR, TO also covers the diagnosis of glaucoma, age-related macular degeneration, and other ophthalmic conditions. In this article, we present an overview of modern TO centers in different countries, the features of their organization and global results that have been achieved during their existence. New technologies developed to facilitate the work of such centers will also be touched: image analysis algorithms, portable diagnostic equipment, medical information systems. The prospects for introducing TO into Russian medical practice are considered separately.

Full Text

Restricted Access

About the authors

Yuri S. Astakhov

I.P. Pavlov First St. Petersburg State Medical University

Email: astakhov@spmu.rssi.ru

MD, Doctor of Medical Science, Professor, Head of the Ophthalmology clinic, Department of Ophthalmology

Russian Federation, Saint Petersburg

Vadim A. Turgel

I.P. Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: Zanoza194@gmail.com

Resident, Department of Ophthalmology

Russian Federation, Saint Petersburg

References

  1. World Health Organisation. Sexual and reproductive health. WHO Guideline: recomendations on digital interventions for health system strengthening. Available from: https://www.who.int/reproductivehealth/publications/digital-interventions-health-system-strengthening/en/.
  2. Gupta SC, Sinha SK, Dagar AB. Evaluation of the effectiveness of diagnostic & management decision by teleophthalmology using indigenous equipment in comparison with in-clinic assessment of patients. Indian J Med Res. 2013;138(4):531-535.
  3. Gonzalez F, Iglesias R, Suarez A, et al. Teleophthalmology link between a primary health care centre and a reference hospital. Med Inform Internet Med. 2001;26(4):251-263. https://doi.org/10.1080/14639230110082424.
  4. Mancho Ng, Nathoo N, Rudnisky CJ, Tennant MT. Improving access to eye care: teleophthalmology in Alberta, Canada. J Diabetes Sci Technol. 2009;3(2):289-296. https://doi.org/10.1177/193229680900300209.
  5. Kim J, Driver DD. Teleophthalmology for first nations clients at risk of diabetic retinopathy: a mixed methods evaluation. JMIR Med Inform. 2015;3(1):е10. https://doi.org/10.2196/medinform.3872.
  6. Boucher MC, Quyn TN, Karine A. Mass community screening for diabetic retinopathy using a nonmydriatic camera with telemedicine. Can J Ophthal. 2005;40(6):734-742. https://doi.org/10.1016/S0008-4182(05)80091-2.
  7. Hark LA, Katz LJ, Myers JS, et al. Philadelphia telemedicine glaucoma detection and follow-up study: methods and screening results. Am J Ophthalmol. 2017;181:114-124. https://doi.org/10.1016/j.ajo.2017.06.024.
  8. Wright HR, Diamond JP. Service innovation in glaucoma management: using a web-based electronic patient record to facilitate virtual specialist supervision of a shared care glaucoma programme. Br J Ophthalmol. 2015;99(3):313-317. https://doi.org/10.1136/bjophthalmol-2014-305588.
  9. Sim DA, Mitry D, Alexander P, et al. The evolution of teleophthalmology programs in the United Kingdom: beyond diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10(2):308-317. https://doi.org/10.1177/1932296816629983.
  10. The Royal College of Ophthalmologists (RCOphth). Ophthalmic Services Guidance. Standards for virtual clinics in glaucoma care in the NHS hospital eye service. Available from: https://www.rcophth.ac.uk/standards-publications-research/ophthalmic-services-guidance-2/.
  11. Chen LS, Tsai CY, Liu TY, et al. Feasibility of tele-ophthalmology for screening for eye disease in remote communities. J Telemed Telecare. 2004;10(6):337-341. https://doi.org/10.1258/1357633042602035.
  12. Xu L, Jost BJ, Tong TC, et al. Beijing eye public health care project. Ophthalmology. 2012;119(6):1167-1174. https://doi.org/10.1016/j.ophtha.2011.11.036.
  13. Medical Avenue Korea. Eye-care ophthalmology in South Korea Available from: https://www.medicalavenuekorea.com/en/specialty/eye-care-ophthalmology-in-south-korea/.
  14. Salamanca O, Geary A, Suárez N, et al. Implementation of a diabetic retinopathy referral network, Peru. Bull World Health Organ. 2018;96(10):674-681. https://doi.org/10.2471/BLT.18.212613.
  15. Massin P, Chabouis A, Erginay A, et al. OPHDIAT: A telemedical network screening system for diabetic retinopathy in the Ile-de-France. Diabetes Metab. 2008;34(3):227-234. https://doi.org/10.1016/j.diabet.2007.12.006.
  16. Johnson KA, Meyer J, Yazar S, Turner AW. Real-time teleophthalmology in rural Western Australia. Aust J Rural Health. 2015;23(3):142-149. https://doi.org/10.1111/ajr.12150.
  17. Ribeiro AG, Rodrigues RA, Guerreiro AM, Regatieri CV. A teleophthalmology system for the diagnosis of ocular urgency in remote areas of Brazil. Arq Bras Oftalmol. 2014;77(4):214-218. https://doi.org/10.5935/0004-2749.20140055.
  18. Fialho GS, Minelli RF, Alkmim MB, et al. Teleophthalmology screening for diabetic retinopathy in Brazil: applicability and economic assessment. Telemed J E Health. 2020;26(3):341-346. https://doi.org/10.1089/tmj.2018.0241.
  19. Verma M, Raman R, Mohan RE. Application of tele-ophthalmology in remote diagnosis and management of adnexal and orbital diseases. Indian J Ophthalmol. 2009;57(5):381-384. https://doi.org/10.4103/0301-4738.55078.
  20. Prathiba V, Rema M. Teleophthalmology: a model for eye care delivery in rural and underserved areas of India. Int J Family Med. 2011;2011:683267. https://doi.org/10.1155/2011/683267.
  21. John S, Sengupta S, Reddy SJ, et al. The Sankara Nethralaya mobile teleophthalmology model for comprehensive eye care delivery in rural India. Telemed J E Health. 2012;18(5):382-387. https://doi.org/10.1089/tmj.2011.0190.
  22. Yoon S, Yoon HS, Kim J, et al. A current status of teleophthalmology in low- and middle-income countries: literature review. J Glob Health Sci. 2019;1(2):e41. https://doi.org/10.35500/jghs. 2019.1.e41.
  23. Saleem SM, Pasquale LR, Sidoti PA, Tsai JC. Virtual ophthalmology: telemedicine in a COVID-19 Era. Am J Ophthalmol. 2020;216:237-242. https://doi.org/10.1016/j.ajo.2020.04.029.
  24. Kalavar M, Hua HU, Sridhar J. Teleophthalmology: an essential tool in the era of the novel coronavirus 2019. Curr Opin Ophthalmol. 2020;31(5):366-373. https://doi.org/10.1097/ICU. 0000000000000689.
  25. World Health Organisation. Global report on diabetes. WHO; 2016. Available from: https://www.who.int/diabetes/global-report/en/.
  26. Squirrell DM, Talbot JF. Screening for diabetic retinopathy. J R Soc Med. 2003;96(6):273-276. https://doi.org/10.1258/jrsm.96.6.273.
  27. Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010. BMJ Open. 2014;(2): e004015. https://doi.org/10.1136/bmjopen-2013-004015.
  28. Telehealth practice recommendations for Diabetic retinopathy. Available from: https://www.americantelemed.org/?s=28 %29 %09Telehealth+practice+recommendations+for+Diabetic+retinopathy.
  29. Шадричев Ф.Е., Шкляров Е.Б., Григорьева Н.Н. Скрининг диабетической ретинопатии: от офтальмоскопии к цифровому фотографированию // Офтальмологические ведомости. – 2009. – Т. 2. – № 4. – С. 19–30. [Shadrichev FE, Shklyarov EB, Grigorieva NN. Diabetic retinopathy scrining: from ophthalmoscopy to digital photography. Ophthalmology journal. 2009;2(4):19-30. (In Russ.)]
  30. Шкляров Е.Б., Григорьева Н.Н., Шадрищев Ф.Е., Астахов Ю.С. Новые технологии визуализации диабетических изменений сетчатки // Сахарный диабет. – 2008. – № 3. – С. 28–29. [Shklyarov EB, Grigorieva NN, Shadrichev FE, Astakhov YuS. New visualisation technology of diabetic retinal changes. Diabetes mellitus. 2008;(3):28-29. (In Russ.)]
  31. Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care. 2003;26(9):2653-2664. https://doi.org/10.2337/diacare.26.9.2653.
  32. Silva PS, Horton MB, Clary D, et al. Identification of diabetic retinopathy and ungradable image rate with ultrawide field imaging in a national teleophthalmology program. Ophthalmology. 2016;123(6):1360-1367. https://doi.org/10.1016/j.ophtha.2016.01.043.
  33. Rubio MM, Moya MM, Bernabé AB, Martínez JB. [Diabetic retinopathy screening and teleophthalmology. (In Spanish)]. Arch Soc Esp Oftalmol. 2012;87(12):392-395. https://doi.org/10.1016/j.oftal.2012.04.004.
  34. EyeRounds.org. Allen dots. Chin E. Many black spots. Available from: https://www.eyerounds.org/atlas/pages/Allen-dot.htm.
  35. Kumar S, Tay-Kearney ML, Constable IJ, Yogesan K. Internet based ophthalmology service: impact assessment. Br J Ophthalmol. 2005;89(10):1382-1383. https://doi.org/10.1136/bjo.2005. 072579.
  36. Sreelatha OK, Ramesh SV. Teleophthalmology: improving patient outcomes? Clin Ophthalmol. 2016;10:285-295. https://doi.org/10.2147/OPTH.S80487.
  37. Cavallerano AA, Cavallerano JD, Katalinic P, et al. Joslin vision network research team a telemedicine program for diabetic retinopathy in a Veterans affairs medical center-the Joslin vision network eye health care model. Am J Ophthalmol. 2005;139(4): 597-604. https://doi.org/10.1016/j.ajo.2004.10.064.
  38. Cree MJ, Olson JA, McHardy KC, et al. A fully automated comparative microaneurysm digital detection system. Eye. 1997;11(Pt 5):622-638. https://doi.org/10.1038/eye.1997.166.
  39. Gardner GG, Keating D, Williamson TH, Elliott AT. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Вr J Ophthalmol. 1996;80(11):940-944. https://doi.org/10.1136/bjo.80.11.940.
  40. Hansen AB, Hartvig NV, Jensen MS, et al. Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis. Acta Ophthalmol Scand. 2004;82(6): 666-672. https://doi.org/10.1111/j.1600-0420.2004.00350.x.
  41. Larsen N, Godt J, Grunkin M, et al. Automated detection of diabetic retinopathy in a fundus photographic screening population. Invest Ophthalmol Vis Sci. 2003;44(2):767-771. https://doi.org/10.1167/iovs.02-0417.
  42. Raman R, Srinivasan S, Virmani S, et al. Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye (Lond). 2019;33(1):97-109. https://doi.org/10.1038/s41433-018-0269-y.
  43. Ting DS, Ang M., Mehta JS, Ting DS. Artificial intelligence-assisted telemedicine platform for cataract screening and manangement: a potential model of care for global eye health. Вr J Ophthalmol. 2019;103(11):1537-1538. https://doi.org/10.1136/bjophthalmol- 2019-315025.
  44. Ting DS, Lin H, Ruamviboonsuk P, et al. Artificial intelligence, the internet of things, and virtual clinics: ophthalmology at the digital translation forefront. Lancet. 2020;2(1):8-9. https://doi.org/10.1016/s2589-7500(19)30217-1.
  45. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402-2410. https://doi.org/10.1001/jama.2016.17216.
  46. Ting DS, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211-2223. https://doi.org/10.1001/jama.2017.18152.
  47. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962-969. https://doi.org/10.1016/j.ophtha.2017.02.008.
  48. Krause J, Gulshan V, Rahimy E, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmol. 2018;125(8): 1264-1272. https://doi.org/10.1016/j.ophtha.2018.01.034.
  49. Styles CJ. Introducing automated diabetic retinopathy systems: it’s not just about sensitivity and specificity. Eye (Lond). 2019;33(9): 1357-1358. https://doi.org/10.1038/s41433-019-0535-7.
  50. Grzybowsky A, Brona P, Lim G, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye (Lond). 2020;34(3): 451-460. https://doi.org/10.1038/s41433-019-0566-0.
  51. Abramoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39. https://doi.org/10.1038/s41746-018-0040-6.
  52. Fleming AD, Goatman KA, Philip S, et al. Automated grading for diabetic retinopathy: a large-scale audit using arbitration by clinical experts. Вr J Ophthalmol. 2010;94(12):1606-1610. https://doi.org/10.1136/bjo.2009.176784.
  53. Natarajan S, Jain A, Krishnan R, et al. Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone. JAMA Ophthalmol. 2019;137(10):1182-1188. https://doi.org/10.1001/jamaophthalmol.2019.2923.
  54. Intelligent Retinal Imaging Systems. Retinal screening. Available from: https://retinalscreenings.com/diabetic-retinopathy-screening-solutions.
  55. Cuadros J, Bresnick G. EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. J Diabetes Sci Technol. 2009;3(3):509-516. https://doi.org/10.1177/193229680900300315.
  56. Naik S, Wykoff CC, Ou WC, et al. Identification of factors to increase efficacy of telemedicine screening for diabetic retinopathy in endocrinology practices using the intelligent retinal imaging system (IRIS) platform. Diabetes Res Clin Pract. 2018;140: 265-270. https://doi.org/10.1016/j.diabres.2018.04.011.
  57. Salongcay RP, Silva PS. The Role of Teleophthalmology in the Management of Diabetic Retinopathy. Asia Pac J Ophthalmol (Phila). 2018;7(1):17-21. https://doi.org/10.22608/APO.2017479.
  58. Hatef E, Alexander M, Vanderver BG. Assessment of annual diabetic eye examination using telemedicine technology among underserved patients in primary care setting. Middle East Afr J Ophthalmol. 2017;24(4):207-212. https://doi.org/10.4103/meajo.MEAJO_19_16.
  59. Mansberger SL, Sheppler C, Barker G, et al. Long-term comparative effectiveness of telemedicine in providing diabetic retinopathy screening examinations: a randomized clinical trial. JAMA Ophthalmol. 2015;133(5):518-525. https://doi.org/10.1001/jamaophthalmol.2015.1.
  60. Boucher MC, Desroches G, Garcia-Salinas R, et al. Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada. Can J Ophthalmol. 2008;43(6):658-668. https://doi.org/10.3129/i08-120.
  61. Kim J, Driver DD. Teleophthalmology for first nations clients at risk of diabetic retinopathy: a mixed methods evaluation. JMIR Med Inform. 2015;3(1): e10. https://doi.org/10.2196/medinform.3872.
  62. Kozak I, Payne JF, Schatz P, et al. Teleophthalmology image-based navigated retinal laser therapy for diabetic macular edema: a concept of retinal telephotocoagulation. Graefes Arch Clin Exp Ophthalmol. 2017;255(8):1509-1513. https://doi.org/10.1007/s00417-017-3674-1.
  63. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262-267. https://doi.org/10.1136/bjo.2005.081224.
  64. Вergua A, Mardin CY, Horn FK. Tele-transmission of stereoscopic images of the optic nerve head in glaucoma via Internet. Telemed J E Health. 2009;15(5):439-444. https://doi.org/10.1089/tmj.2008.0162.
  65. Li HK, Tang RA, Oschner K, et al. Telemedicine screening of glaucoma. Telemed J. 1999;5(3):283-290. https://doi.org/10. 1089/107830299312032.
  66. Russo A, Mapham W, Turano R, et al. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading vertical cup-to-disc ratio. J Glaucoma. 2016;25(9):777-781. https://doi.org/10.1097/IJG.0000000000000499.
  67. Russo A, Morescalchi F, Costagliola C, et al. A novel device to exploit the smartphone camera for fundus photography. J Ophthalmol. 2015;2015:823139. https://doi.org/10.1155/2015/823139.
  68. Myung D, Jais A, He L, et al. 3D printed smartphone indirect lens adapter for rapid, high quality retinal imaging. J Mob Technol Med. 2014;3(1):9-15. https://doi.org/10.7309/jmtm.3.1.3.
  69. Chiong HS, Fang JL, Wilson G. Tele-manufactured affordable smartphone anterior segment microscope. Clin Exp Optom. 2016;99(6):580-582. https://doi.org/10.1111/cxo.12381.
  70. Seo E, Jaccard N, Trikha S, et al. Automated evaluation of optic disc images for manifest glaucoma detection using a deep-learning, neural network-based algorithm. Invest Ophthalmol Vis Sci. 2018;59(9):2080.
  71. Rogers TW, Jaccard N, Carbonaro F, et al. Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: The European optic disc assessment study. Eye (Lond). 2019;33(11):1791-1797. https://doi.org/10.1038/s41433-019-0510-3.
  72. Phene S, Dunn RC, Hammel N, et al. Deep learning and glaucoma specialist. The relative importance of optic disc features to predict glaucoma referral in fundus photograph. Ophthalmology. 2019;126(12):1627-1639. https://doi.org/10.1016/j.ophtha.2019.07.024.
  73. Mayro EL, Wang M, Elze T, Pasquale LR. The impact of artificial intelligence in the diagnosis and manangement of glaucoma. Eye (Lond). 2020;34(1):1-11. https://doi.org/10.1038/s41433-019-0577-x.
  74. Thomas SM, Jeyaraman MM, Hodge WG, et al. The effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. PLoS One. 2014;9(12): e113779. https://doi.org/10.1371/journal.pone.0113779.
  75. Kiage D, Kherani IN, Gichuhi S, et al. The muranga teleophthalmology study: comparison of virtual (teleglaucoma) with in-person clinical assessment to diagnose glaucoma. Middle East Afr J Ophthalmol. 2013;20(2):150-157. https://doi.org/10.4103/0974-9233.110604.
  76. Pak H, Triplett CA, Lindquist JH, et al. Store-and-forward teledermatology results in similar clinical outcomes to conventional clinic-based care. J Telemed Telecare. 2007;13(1):26-30. https://doi.org/10.1258/135763307779701185.
  77. Araci IE, Su B, Quake SR, Mandel Y. An implantable microfluidic device for self-monitoring of intraocular pressure. Nat Med. 2014;20(9):1074-1078. https://doi.org/10.1038/nm.3621.
  78. Damato Campimeter User’s Guide: 293000. Available from: http://www.equipo-psicotecnico.es/noticias/wp-content/uploads/2014/11/293000_DamatoCampimeter.pdf.
  79. Frisén L. Rapid assessment of neurovisual integrity using multiple rarebits. Ophthalmology. 2013;120(9):1756-1760. https://doi.org/10.1016/j.ophtha.2013.01.062.
  80. Нестерюк Л.И. ОКУЛЯР – программа для диагностики патологий зрительной системы. Цветовая кампиметрия – комплекс компьютерных методик [электронный ресурс]. [Nesteryuk LI. OKULYAR – programma dlya diagnostiki patologiy zritel’noy sistemy. Tsvetovaya kampimetriyaR – kompleks komp’yuternykh metodik [elektronnyy resurs]. (In Russ.)]. Доступно по: http://www.ocular.ru/old/ocul1_2r.html. Ссылка активна на 15.06.2020.
  81. Сердюкова С.А., Симакова И.Л. Компьютерная периметрия в диагностике первичной открытоугольной глаукомы // Офтальмологические ведомости. – 2018. – Т. 11. – № 1. – С. 54–65. [Serdyukova SA, Simakova IL. Computer perimetry in the diagnosis of primary open-angle glaucoma. Ophthalmology journal. 2018;11(1):54-65. (In Russ.)]. https://doi.org/10.17816/OV11154-65.
  82. Симакова И.Л., Сердюкова С.А. Некоторые аспекты сравнительной характеристики разных методов компьютерной периметрии // Офтальмологические ведомости. – 2015. – Т. 8. – № 2. – С. 5–9. [Simakova IL, Serdyukova SA. Some aspects of the comparative characteristics of different computerized perimetry methods. Ophthalmology journal. 2015;8(2):5-9. (In Russ.)]
  83. Frisén L. Performance of a rapid rarebit central-vision test with optic neuropathies. Optom Vis Sci. 2012;89(8):1192-1195. doi: 10.1097/OPX.0b013e318264f406.
  84. Wall M, Chauhan B, Frisén L, et al. Visual field of high-pass resolution perimetry in normal subjects. J Glaucoma. 2004;13(1):15-21. https://doi.org/10.1097/00061198-200402000-00004.
  85. Еричев В.П., Ермолаев А.П., Антонов А.А., и др. Новые возможности исследования поля зрения (предварительное сообщение) // Вестник офтальмологии. – 2018. – T. 134. – № 2. – С. 66–72. [Erichev VP, Ermolaev AP, Antonov AA, et al. New visual field testing possibilities (a preliminary report). Russian Annals of ophthalmology. 2018;134(2):66-72. (In Russ.)]. https://doi.org/10.17116/oftalma2018134266-72.
  86. Matsumoto C, Yamao S, Nomoto H, et al. Visual Field Testing with Head-Mounted Perimeter «imo». PloS ONE. 2016;11(8): e0161974. https://doi.org/10.1371/journal.pone.0161974.
  87. The Royal College of Ophthalmologists (RCOphth). Ophthalmic Services Guidance – Standards for Virtual Clinics in Glaucoma Care in the NHS Hospital Eye Service. Available from: https://www.rcophth.ac.uk/wp-content/uploads/2017/03/Virtual-Glaucoma-Clinics.pdf.
  88. Kassam F, Sogbesan E, Boucher S, et al. Collaborative care and teleglaucoma: a novel approach to delivering glaucoma services in northern Alberta, Canada. Clin Exp Optom. 2013;96(6):577-580. https://doi.org/10.1111/cxo.12065.
  89. Hautala N, Hyytinen P, Saarela V, et al. A mobile eye unit for screening of diabetic retinopathy and follow-up of glaucoma in remote locations in northern Finland. Acta Ophthalmol. 2009;87(8): 912-913. https://doi.org/10.1111/j.1755-3768.2009.01570.x.
  90. De Mul M, de Bont AA, Reus NJ, et al. Improving the quality of eye care with tele-ophthalmology: shared-care glaucoma screening. J Telemed Telecare. 2004;10(6):331-336. https://doi.org/10.1258/1357633042602107.
  91. Yu SY, Yang JH, Kim Y, et al. Reliability of smartphone-based electronic visual acuity testing: (Applications in remote monitoring and clinical research of macular pathology). Invest Ophthalmol Vis Sci. 2014;55(13):5598.
  92. Andonegui J, Aliseda D, Serrano L, et al. Evaluation of a telemedicine model to follow up patients with exudative age-related macular degeneration. Retina. 2016;36(2):279-284. https://doi.org/10.1097/IAE.0000000000000729.
  93. Wittenborn JS, Clemons T, Regillo C, et al. Economic evaluation of a home-based age-related macular degeneration monitoring system. JAMA Ophthalmol. 2017;135(5):452-459. https://doi.org/10.1001/jamaophthalmol.2017.0255.
  94. Thomas M, Wolfson Y, Zayit-Soudry S, et al. Qualifying to use a home monitoring device for detection of neovascular age-related macular degeneration. JAMA Ophthalmol. 2015;133(12): 1425-1430. https://doi.org/10.1001/jamaophthalmol.2015.3684.
  95. The Royal College of Ophthalmologists (RCOphth). The Way Forward. Options to help meet demand for the current and future care of patients with eye disease. Available from: https://www.rcophth.ac.uk/wp-content/uploads/2015/10/RCOphth-The-Way-Forward-AMD-300117.pdf.
  96. Amoaku W, Bailey C, Downey L, et al. Providing a safe and effective intravitreal treatment service: strategies for service delivery. Clin Ophthalmol. 2020;14:1315-1328. https://doi.org/10.2147/OPTH.S233061.
  97. Lee CS, Baughman DM, Lee AY. Deep learning is effective for the classification of OCT images of normal versus age-related macular degeneration. Ophthalmology Retina. 2017;1(4):322-327. https://doi.org/10.1016/j.oret.2016.12.009.
  98. Skalet AH, Quinn GE, Ying GS, et al. Telemedicine screening for retinopathy of prematurity in developing countries using digital retinal images: a feasibility project. J AAPOS. 2008;12(3): 252-258. https://doi.org/10.1016/j.jaapos.2007.11.009.
  99. Fierson WM, Capone A. Telemedicine for evaluation of retinopathy of prematurity. Pediatrics. 2015;135(1):238-254. https://doi.org/10.1542/peds.2014-0978.
  100. Shah PK, Ramya A, Narendran V. Telemedicine for ROP. Asia Pac J Ophthalmol (Phila). 2018;7(1):52-55. https://doi.org/10.22608/APO.2017478.
  101. Murthy KR, Murthy PR, Shah DA, et al. Comparison of profile of retinopathy of prematurity in semiurban/rural and urban NICUs in Karnataka, India. Br J Ophthalmol. 2013;97(6):687-689. https://doi.org/10.1136/bjophthalmol-2012-302801.
  102. Abbey AM, Besirli CG, Musch DC, et al. Evaluation of screening for retinopathy of prematurity by ROPtool or a lay reader. Ophthalmology. 2016;123(2):385-390. https://doi.org/10.1016/j.ophtha.2015.09.048.
  103. Kim SJ, Campbell JP, Ostmo S, et al. Changes in relative position of choroidal versus retinal vessels in preterm infants. Invest Ophthalmol Vis Sci. 2017;58(14):6334-6341. https://doi.org/10.1167/iovs.17-22687.
  104. Gelman R, Martinez-Perez ME, Vanderveen DK, et al. Diagnosis of plus disease in retinopathy of prematurity using retinal image multiScale analysis. Invest Ophthalmol Vis Sci. 2005;46(12): 4734-4738. https://doi.org/10.1167/iovs.05-0646.
  105. Shah DN, Wilson CM, Ying GS, et al. Comparison of expert graders to computer-assisted image analysis of the retina in retinopathy of prematurity. Br J Ophthalmol. 2011;95(10):1442-1445. https://doi.org/10.1136/bjo.2010.185363.
  106. Vinekar A, Gilbert C, Dogra M, et al. The KIDROP model of combining strategies for providing retinopathy of prematurity screening in underserved areas in India using wide-field imaging, tele-medicine, non-physician graders and smart phone reporting. Indian J Ophthalmol. 2014;62(1):41-49. https://doi.org/10.4103/0301-4738.126178.
  107. Ko MW, Busis NA. Tele-neuro-ophthalmology: vision for 20/20 and beyond. J Neuroophthalmol. 2020;40(3):378-384. https://doi.org/10.1097/WNO.0000000000001038.
  108. Lai KE, Ko MW, Rucker JC, et al. Tele-neuro-ophthalmology during the age of COVID-19. J Neuroophthalmol. 2020;40(3):292-304. https://doi.org/10.1097/WNO.0000000000001024.
  109. Versek C, Rissmiller A, Tran A, et al. Portable system for neuro-optical diagnostics using virtual reality display. Mil Med. 2019;184 (Suppl1):584-592. https://doi.org/10.1093/milmed/usy286.
  110. Гуляев Ю., Никитов С. Телемедицина третьего поколения в третьем тысячелетии // Наука и жизнь. – 2019. – № 1. – С. 82–89. [Gulyaev Yu, Nikitov S. Telemeditsina tret’ego pokoleniya v tret’em tisyacheletii. Nauka i zhizn’. 2019;(1):82-89. (In Russ.)]
  111. Инноватика: инновационные выставочные мероприятия [электронный ресурс]. Сельков А.И., Столяр В.Л., Атьков О.Ю., Селькова Е.А. Российская ассоциация телемедицины — пятнадцать лет активного развития инновационных телемедицинских технологий в России. [Innovatika: innovatsionnye vystavochnye meropriyatiya [elektronnyy resurs]. Sel’kov AI, Stolyar VL, At’kov OYu, Sel’kova EA. Rossiyskaya assotsiatsiya telemeditsiny – pyatnadtsat’ let aktivnogo razvitiya innovatsionnykh telemeditsinskikh tekhnologiy v Rossii. (In Russ.)]. Доступно по: http://salonexpo.ru/dict/view.php? ID=19. Ссылка активна на 15.06.2020.
  112. Пивень Д.В. Модель организационных мероприятий по внедрению телемедицины в деятельность практического здравоохранения региона // Сибирский медицинский журнал (Иркутск). – 2003. – Т. 38. – № 3. – С. 84–87. [Piven DV. Model of organisation measures on an intrusion of telemedicine, in the practical public health services in the region. Siberian Medical Journal (Irkutsk). 2003;38(3):84–87. (In Russ.)]
  113. Агентство страховых новостей [электронный ресурс]. Опрос ONDOC: 72 % медицинских клиник используют телемедицину. [Agentstvo strakhovykh novostey [elektronnyy resurs]. Opros ONDOC: 72 % meditsinskikh klinik ispol’zuyut telemeditsinu. (In Russ.)]. Доступно по: http://www.asn-news.ru/news/69267. Ссылка активна на 15.06.2020.
  114. Кузьмичев А.Г., Трубилин В.Н., Гусев Ю.А. Телемедицина в практике работы Центра офтальмологии ФМБА России // Медицина экстремальных ситуаций. – 2011. – № 3. – С. 28–31. [Kuzmichev AG, Trubilin VN, Gusev YuA. Telemedicine and its role in the activities of the FMBA ophthalmology Center. Medicine of extreme situations. 2011;(3):28-31. (In Russ.)]
  115. Медведев И.Б., Трубилин В.Н., Медведева Н.И., Трубилина М.А. Первый практический опыт офтальмо-телемедицины в России // Современные информационные технологии в диагностической, лечебной и образовательной деятельности: сб. науч. статей. – М., 2000. – С. 67–69. [Medvedev IB, Trubilin VN, Medvedeva NI, Trubilina MA. Pervyy prakticheskiy opyt oftal’mo-telemeditsiny v Rossii. In: (Collection of scientific articles) Sovremennye informatsionnye tekhnologii v diagnosticheskoy, lechebnoy i obrazovatel’noy deyatel’nosti. Moscow; 2000. Р. 67-69. (In Russ.)]
  116. Трубилин B.Н., Ларгин С.А. Телевизионные системы в работе кафедры офтальмологии // Современные информационные технологии в диагностической, лечебной и образовательной деятельности. – М., 2000. – С. 69–72. [Trubilin BN, Largin SA. Televizionnye sistemy v rabote kafedry oftal’mologii. In: (Collection of scientific articles) Sovremennye informatsionnye tekhnologii v diagnosticheskoy, lechebnoy i obrazovatel’noy deyatel’nosti. Moscow; 2000. Р. 69-72. (In Russ.)]
  117. Трубилин В.Н., Зюзин Л.Н., Ларгин С.А. Телевизионные средства отображения микрохирургических операций в работе офтальмологической службы Федерального управления медико-биологических и экстремальных проблем // Новые промышленные технологии. – 2000. – № 1. – C. 87–91. [Trubilin VN, Zuzin LN, Largin SA. Television means of displaying microsurgical operations in the work of the ophthalmological service of the Federal directorate of biomedical and extreme problems. Novye promyshlennyye tekhnologii. 2000;(1):87-91. (In Russ.)]
  118. Российская офтальмология онлайн № 23 [электронный ресурс]. Ходжаев Н.С. Основы построения телемедицины в офтальмологии. [Rossiyskaya oftal’mologiya onlayn № 23 [elektronnyy resurs]. Khodzhaev NS. Osnovy postroeniya telemeditsiny v oftal’mologii. (In Russ.)]. Доступно по: https://eyepress.ru/article.aspx?22675. Ссылка активна на 15.06.2020.
  119. Черных В.В., Ходжаев Н.С., Шахов В.Г. Методология развития телемедицинских и информационных систем ФГАУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» МЗ РФ на примере Новосибирского филиала // Офтальмохирургия. – 2018. – № 1. – C. 84–90. [Chernykh VV, Khodzhaev ND, Shakhov VG. Methodology for the development of telemedicine and information systems of the S. Fyodorov eye microsurgery federal state institution on the example of the Novosibirsk branch. Oftal’mokhirurgiia. 2018;(1):84-90. (In Russ.)]. https://doi.org/ 10.25276/0235-4160-2018-1-84-90.
  120. Zdrav.Expert: Медтех-портал [электронный ресурс]. Videoconferencing. Системы видеоконференцсвязи. [Zdrav.Expert: Medtekh-portal [elektronnyy resurs]. Videoconferencing. Sistemy videokonferentssvyazi. (In Russ.)]. Доступно по: http://zdrav.expert/index.php/Видеоконференцсвязь. Ссылка активна 15.06.2020.
  121. Постановление Государственного комитета РФ по стандартизации и метрологии от 26 января 2000 г. № 15-ст «О принятии и введении в действие рекомендаций по стандартизации». [Resolution of the state Committee for standardization and Metrology of the Russian Federation № 15-st “O prinyatii i vvedenii v deystvie rekomendatsiy po standartizatsii”, dated 2000 January 26. (In Russ.)]. Доступно по: https://base.garant.ru/70684352/. Ссылка активна на 15.06.2020.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Astakhov Y.S., Turgel V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies