ФГБОУ ВО Курский государственный медицинский университет Минздрава России, Курск, Россия

Принимая во внимание особенности кровоснабжения печени и структуру ее паренхимы, а вследствие этого и значительные трудности в достижении надежного гемостаза без дополнительной травматизации, хирургу необходимо быть осторожным при проведении оперативного пособия. Несмотря на большое количество современных методов достижения остановки паренхиматозного кровотечения многие практикующие специалисты отдают предпочтение классическим методам гемостаза, в т.ч. лигированию кровоточащих сосудов в толще органа при помощи специализированных швов. Одним из тяжелейших осложнений применения шовного материала является прорезывание ткани органа, что приводит к усилению кровотечения и расширению области повреждения. В настоящий момент тактика выбора шовного материала для выполнения оперативного пособия носит эмпирический характер. В связи с этим, цель данного исследования заключалась в проведении оценки физико-механических свойств шовного материала в зависимости от его структуры, а также разработке критерия выбора хирургических нитей для оперативного пособия. Для исследования производилось изъятие печени трупов лиц мужского пола от 35 до 40 лет, после чего из нее выделялись отдельные участки размерами 7,5×7×4 см. Затем наносили рану длиной 3 см, глубиной 2 см. Рану ушивали простым узловым швом, который не затягивали, а накладывали один простой полуузел. Для ушивания применяли кетгут, капрон крученый и нить полигликолидную. Обращали внимание на максимальное усилие на момент прорезывания (Fmax) и степень вытяжения нити на момент прорезывания (Lu). Анализ полученных данных проводился на основе сравнения показателей Fmax и Lu. Использование этого метода позволяет отказаться от эмпирического подхода к выбору шовного материала при операциях на печени, а также разработать критерий выбора хирургических нитей.

Ключевые слова: гемостаз; печень; шовный материал; физико-механические свойства.

© В.А. Липатов, Д.А. Северинов, А.А. Денисов, Н.Н. Григорьев, С.В. Лазаренко

RESEARCH OF PHYSICAL AND MECHANICAL CHARACTERISTICS OF SUTURE MATERIAL IN EXPERIMENT IN OPERATIONS ON LIVER

V.A. Lipatov, D.A. Severinov, A.A. Denisov, N.N. Grigoryev, S.V. Lazarenko

Kursk State Medical University, Kursk, Russia

Taking into account the peculiarities of the blood supply to the liver and the structure of its parenchyma, and, as a result, considerable difficulties in providing reliable hemostasis without additional traumatization, a surgeon needs to be careful when performing a surgical manipulation. Despite a large number of modern methods for stopping parenchymal bleeding, many practitioners...
give preference to classic methods of hemostasis, including ligation of bleeding vessels in the bulk of the organ using specialized sutures. One of the most serious complications of the use of suture material is cutting of organ tissue, which leads to enhanced bleeding and expansion of the area of damage. At the moment, the tactics of choosing suture material for surgical procedures is empirical. In this context, the aim of this study was to assess the physico-mechanical properties of suture material regarding its structure, and to develop a criterion for choosing surgical sutures for surgical procedures. For the study, the liver was removed out of corpses of males of 35 to 40 years of age, after which separate sections of 7.5×7×4 cm in size were obtained from it. Then a wound 3 cm long and 2 cm deep was made. The wound was sutured with a simple interrupted suture without tightening, but with application of one simple half-node. For suturing, catgut, twisted capron and polyglycolide thread were used. Attention was paid to the maximal force applied at the moment of cutting (Fmax) and the degree of pulling the thread at the moment of cutting (Lu). The analysis of the data was based on comparison of Fmax and Lu parameters. This method permits to refuse from the empirical approach to the choice of suture material for operations on the liver, and to develop a criterion for choosing surgical sutures.

Keywords: hemostasis; liver; suture material; physical and mechanical properties.

Organ-saving operations present an important problem in modern abdominal surgery [1]. For example, trauma of the liver is one of most severe in the course and most difficult in the diagnosis abdominal damages that makes 30% of traumas of the abdominal organs. Taking into account peculiarities of the blood supply to the liver, its wounds are associated with massive parenchymal bleeding [2-3]. To evaluate the extent of traumatization of the organ, different scales are used. Members of the Department of Operative Surgery and Topographic Anatomy of Kursk State Medical University proposed their own classification of liver damages:

I. Without breakage of integrity of the capsule;
II. With breakage of integrity of the capsule;
III. Damage to the ligamentous apparatus;
IV. Damage to extrahepatic vessels [4].

In treatment of trauma of the liver both conservative and surgical methods are used. Surgical manipulations include ligation of the large hepatic vessels, resection of the damaged part of parenchyma, application of a hemostatic sponge, etc. However, all the described methods imply use of surgical sutures. Among several classification categories of suture materials of highest scientific interest is the structure of threads [5].

There exist two large groups of sutures differing in the texture: monofilament and polyfilament. The latter includes twisted and braided suture material. Of no less importance are such properties of surgical sutures as elasticity and biological inactivity [6-9].

However, in Russian and international scientific literature there is no information about investigation of physico-mechanical characteristics of suture material for use on the biological objects, and tightening of the node is evaluated only subjectively [10-11].

The aim of the study is evaluation of physico-mechanical characteristics of suture material of different structure and elaboration of the criterion for selection of surgical sutures for surgical treatment.

Materials and Methods

The base for the given study was laboratory of experimental surgery and oncology of Research Institute of Experimental Medicine (LESO RIEM) of Kursk State Medical University of Healthcare Ministry of Russia.

The object of study was portions of the diaphragmal surface of the right lobe of the liver of corpses of males 35-40 years old taken in the Office of the Chief Medical Examiner of Kursk. Taking out and use of the biological material were permitted by Regional Ethic
Committee within the frames of the RF Government Decree of 21.07.2012 №750 (ed. of 17.12.2016) «On approval of regulations of transfer of non-claimed body, organs and tissues of a dead person for use for medical, scientific and educational purposes and also of use of non-claimed body, organs and tissues of a dead person for the mentioned purposes».

One of the main criteria for selection of the biological material was the absence of any macroscopic pathological alterations, and also the absence of hepatic diseases in history. The time interval between taking out of the organ and its use was not more than 4 hours to minimize the negative influence of autolysis on the reliability of the obtained results.

For examination a part of parenchyma 7.5×7×4 cm in size was separated from the organ. The next step was making a wound on the isolated part of the organ 3 cm long, 2 cm deep. The wound was sutured with simple interrupted stitches without tightening, with application of one simple half-node. For ligation, a piece of suture material was used 50 cm in length. Such length of thread is optimal for further work on the test bed. Monofilament (catgut), twisted (twisted capron) and braided (polygylcolide) suture materials of the same thickness (3/0 by USP) were used. After modeling and ligation of the wound the studied part of the organ was placed on the device for examination of the physico-mechanical characteristics of the sutures and suture material, of the extent of deformation of the parenchyma of the organs (patent №184617). The device was designed on the base of LESO RIEM of Kursk State Medical University [12].

An additional equipment was universal testing electromechanical machine РЭМ–0,2-1 (OOO Metrotrest, Neftekamsk, Republic of Bashkortostan) equipped with a dynamometer and a display showing changes in the pulling of the suture material in the graphic form. Maximal effort (Fmax) applied before cutting of the organ parenchyma and/or rupture of suture material was analyzed, and also the extent of pulling of the thread (Lu). For the study 3 groups of 60 samples in each were formed with different structure of the used suture material. The obtained results were interpreted using methods of statistical processing (calculation of the arithmetic mean, the average error of mean, of 25th and 75th percentiles). Statistical significance of comparisons was determined using Mann-Whitney test with p≤0.05 admissible for biomedical studies. As software for statistical processing, license versions of Statistica programs were used (version 10.0, Stat Soft Inc., USA) and Excel 2013 spreadsheet program (Microsoft Office, USA).

Results and Discussion

According to the results of study (Tables 1,

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>monofilament</th>
<th>twisted</th>
<th>braided</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>65.20</td>
<td>88.68</td>
<td>78.01</td>
</tr>
<tr>
<td>m</td>
<td>0.059</td>
<td>0.64</td>
<td>0.083</td>
</tr>
<tr>
<td>Me</td>
<td>65.21</td>
<td>81.24</td>
<td>78.02</td>
</tr>
<tr>
<td>25th percentile</td>
<td>65.23</td>
<td>81.34</td>
<td>78.9</td>
</tr>
<tr>
<td>75th percentile</td>
<td>65.31</td>
<td>89.93</td>
<td>79.56</td>
</tr>
<tr>
<td>p</td>
<td>**≤ 0.05</td>
<td>*≥ 0.05</td>
<td>≤ 0.05</td>
</tr>
</tbody>
</table>

Note: * – comparison of the mean Fmax values of samples sutured with braided suture material with samples sutured with monofilament threads; ** – comparison of the mean Fmax values of samples sutured with twisted material with samples sutured with braided surgical threads; *** – comparison of mean Fmax values sutured with monofilament material with samples sutures with twisted threads.
Lu Parameters (mm) of Studied Groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Suture Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>monofilament</td>
</tr>
<tr>
<td>M</td>
<td>54.31</td>
</tr>
<tr>
<td>m</td>
<td>0.057</td>
</tr>
<tr>
<td>Me</td>
<td>54.41</td>
</tr>
<tr>
<td>25th percentile</td>
<td>54.4</td>
</tr>
<tr>
<td>75th percentile</td>
<td>54.43</td>
</tr>
<tr>
<td>p</td>
<td>*≥ 0.05</td>
</tr>
</tbody>
</table>

Note: * – comparison of the mean Lu values of samples sutured with braided material with samples sutured with monofilament threads; ** – comparison of mean Lu values of samples sutured with twisted material with samples sutured with braided surgical threads; *** – comparison of mean Lu values of samples sutured with monofilament material with samples sutured with twisted threads.

Table 2

2), the mean Fmax in use of monofilament suture material at which cutting of parenchyma took place, was 65.20 H, with the medium pulling of thread 54.31 mm, that was the lowest value in three groups.

The obtained results permit to state that the least preferable suture material in operations on the liver is monofilament. However, there exists practical necessity in the introduction and evaluation of the coefficient that can help standardize and scientifically substantiate selection of suture material for certain kinds of surgical manipulations.

The authors propose to introduce cutting coefficient (Cc) calculated as the ratio of Fmax to Lu (the value that should be ≥1). This is associated with the fact that during tightening of the node the Lu parameter increases while the cross section area of the thread and the area of its contact with the bulk of parenchyma decreases which increases the risk of cutting. Therefore, in operations on the liver the suture material should be used that can withstand high axial load with insignificant stretch.

Conclusion

Thus, the conducted study permitted to identify statistically significant differences between monofilament and twisted/braided suture material and put into a question the reasonability of using monofibers in operations on the liver.

The proposed cutting coefficient will permit to gradually refuse from the empiric approach to selection of suture material.

Literature

References

Дополнительная информация [Additional Info]

Источник финансирования. Бюджет ФГБОУ ВО Курский государственный медицинский университет Минздрава России. [Financing of study. Budget of Kursk State Medical University.]

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, о которых необходимо сообщить в связи с публикацией данной статьи. [Conflict of interests. The authors declare no actual and potential conflict of interests which should be stated in connection with publication of the article.]

Участие авторов. Липатов В.А., Григорьев Н.Н. – концепция и дизайн исследования, редактирование, Северинов Д.А., Денисов А.А., Лазаренко С.В. – сбор и обработка материала, статистическая обработка, написание текста. [Participation of authors. V.A. Lipatov, N.N. Grigor’yev – concept and design of the study, editing, D.A. Severinov, A.A. Denisov, S.V. Lazarenko – acquisition and processing of the material, statistical processing, writing the text.]

Информация об авторах [Authors Info]

Липатов Вячеслав Александрович – д.м.н., проф., профессор кафедры оперативной хирургии и топографической анатомии; зав. лабораторией экспериментальной хирургии и онкологии Научно-исследовательского института экспериментальной медицины, ФГБОУ ВО Курский государственный медицинский университет Минздрава России, Курск, Россия. [Vyacheslav A. Lipatov – MD, PhD, Professor, Professor of the Department of Operative Surgery and Topographic Anatomy; Head of the Experimental Surgery and Oncology Laboratory of Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia.]

Иванов Дмитрий Андреевич – ассистент кафедры детской хирургии и педиатрии факультета послепродолжительного образования, ФГБОУ ВО Курский государственный медицинский университет Минздрава России, Курск, Россия. [Dmitry A. Severinov – Assistant of the Department of Pediatric Surgery and Pediatrics at the Faculty Postgraduate Education, Kursk State Medical University, Kursk, Russia.]

Денисов Артем Александрович – студент лечебного факультета, ФГБОУ ВО Курский государственный медицинский университет Минздрава России, Курск, Россия. [Artem A. Denisov – Student of the Medical Faculty, Kursk State Medical University, Kursk, Russia.]

Лазаренко Сергей Викторович – к.м.н., ассистент кафедры онкологии, ФГБОУ ВО Курский государственный медицинский университет Минздрава России, Курск, Россия. [Sergey V. Lazarenko – MD, PhD, Assistant of the Department of Oncology, Kursk State Medical University, Kursk, Russia.]

Григорьев Николай Николаевич – д.м.н., доц., профессор кафедры хирургических болезней факультета послепродолжительного образования, ФГБОУ ВО Курский государственный медицинский университет Минздрава России, Курск, Россия. [Nikolay N. Grigor’yev – MD, PhD, Associate Professor, Professor of the Department of Surgical Diseases at the Faculty Postgraduate Education, Kursk State Medical University, Kursk, Russia.]

ПОДРОБНОЕ СОДЕРЖАНИЕ [Detailed Content]

1. The purpose of the study was to evaluate the biomechanical properties of five suture materials used in knot configurations in vitro. The study was conducted to assess the effect of instrumentation on suture tensile strength and knot pullout strength of common suture materials.

2. The materials evaluated in this study included polyglycolic acid (PGA), polypropylene (PP), polyamide (Prolene), polyethylene (Ethilon), and polyoxymethylene (POM). The suture materials were evaluated at three knot configurations: overhand knot (OK), square knot (SK), and surgeon’s knot (SK). The suture properties evaluated included the knot pullout strength and the deformation characteristics of the suture materials.

3. The study included a total of 120 suture samples, with 40 samples per suture material and knot configuration. The samples were mounted on a custom-designed testing rig and subjected to cyclic loading until failure. The knot pullout strength was determined using a digital force gauge, and the deformation characteristics were assessed using high-speed photography.

4. The results of the study indicated that the knot pullout strength of the suture materials varied significantly depending on the knot configuration. The SK showed the highest knot pullout strength for all suture materials, followed by the OK and then the SK. The deformation characteristics of the suture materials also varied significantly, with the PGA showing the highest and the POM the lowest deformation.

5. The study concluded that the knot pullout strength and deformation characteristics of the suture materials are significantly affected by the knot configuration. The results of this study may be used to guide the selection of appropriate suture materials for various surgical procedures.

6. The study was conducted in compliance with the ethical guidelines for animal experimentation. The animal care and use committee of the Kursk State Medical University approved all aspects of the study. The authors declare no actual and potential conflict of interests which should be stated in connection with publication of the article.

7. The study was supported by the budget of the Kursk State Medical University, Kursk, Russia. The authors wish to thank the staff of the Department of Operative Surgery and Topographic Anatomy for their assistance.

8. Additional information can be obtained from the corresponding author: Dmitry A. Severinov, d.severinov@gmail.com.

To cite this article: Lipatov VA, Severinov DA, Denisov AA, Grigoryev NN, Lazarenko SV. Research of physical and mechanical characteristics of suture material in experiment in operations on liver. I.P. Pavlov Russian Medical Biological Herald. 2020;28(2):193-9. doi:10.23888/PAVLOVJ2020282193-199

Поступила/Received: 12.12.2019
Принята в печать/Accepted: 01.06.2020