ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

© Коллектив авторов, 2013 УДК 615.03:577.164.2

К МЕХАНИЗМУ АНТИГИПОКСИЧЕСКОГО ДЕЙСТВИЯ НОВОГО КОМПЛЕКСНОГО СОЕДИНЕНИЯ АСКОРБИНОВОЙ КИСЛОТЫ

В.Е. Новиков, 1 Е.О. Маркова, 1 Э.А. Парфенов 2

ГБОУ ВПО Смоленская Государственная Медицинская Академия, г. Смоленск (1) Российский онкологический научный центр имени Н.Н. Блохина РАМН, г. Москва (2)

В эксперименте на крысах изучено новое производное аскорбиновой кислоты с антигипоксической активностью. Показано, что в дозе 100 мг/кг в условиях нормоксии и после воздействия острой гипоксии оно уменьшает активность свободнорадикального окисления, не оказывает влияния на гемограмму, но приводит к существенному снижению активности АлАТ, АсАТ, ЩФ, ЛДГ, уровня мочевой кислоты и общего белка после воздействия острой гипоксии, что имеет определенное значение в его антигипоксическом эффекте.

Ключевые слова: антигипоксанты, свободнорадикальное окисление, гемограмма, биохимические показатели.

Комплексное соединение ванадила с аскорбатом и рибофлавином аскорбаторибофлавинатованадил(II) трисемигидрата(I) – под лабораторным шифром πО 1968, синтезированное д.х.н. Э.А. Парфеновым в РОНЦ им. Н.Н. Блохина РАМН, является антигипоксантным средством [5]. Механизм антигипоксического действия данного соединения, возможно, обусловлен снижением интенсивности метаболических процессов в клетке, его оптимизирующим влиянием на функциональное состояние ЦНС [4]. Важным и информативным объектом исследования является кровь, т.к. кровь, как жидкая соединительная ткань организма, не только обеспечивает взаимосвязь всех органов и систем, являясь индикатором состояния организма, но и сама непосредственно реагирует на дефицит кислорода [7, 8]. В условиях недостаточного для удовлетворения потребностей метаболизма снабжения тканей кислородом начинается цепь физиологических и биохимических изменений, цель которых обеспечить оптимальную функцию и по возможности интактное восстановление организма после окончания периода гипоксии. Перспективным при гипоксии является применение лекарственных средств, способных тормозить активацию процессов свободнорадикального окисления в клетке, уменьшать образование токсических метаболитов и снижать их повреждающее действие.

Как известно, аскорбиновая кислота относится к числу наиболее активных прооксидантов, а также заметно усиливает действие истинных биоантиокислителей. Исходя из этого, представляло интерес изучить действие комплексного производного аскорбиновой кислоты πQ 1968 на процессы свободнорадикального окисления (СРО), гемограмму и биохимические показатели крови крыс в условиях нормоксии и после воздействия острой гипоксии, что позволит расширить представления о механизме антигипоксического действия соединения.

Материалы и методы

Исследование проведено на 240 крысах-самцах линии Wistar массой 180-200 г в соответствии с «Руководством по экспериментальному изучению новых фармакологических веществ» [6]. Анализируемое соединение πQ 1968 вводили однократно внутрибрющинно за 1 час до эксперимента

в дозе 100 мг/кг (эффективная доза при гипоксии). Контрольным животным вводили равный объем дистиллированной воды. В качестве препаратов сравнения выступали антигипоксант мексидол (ООО «ФАРМА-СОФТ», Россия) и природный антиоксидант аскорбиновая кислота (ООО «ОЗОН», Россия) в дозах 100 мг/кг. Кровь для исследования брали из сосудов шеи декапитированного животного через час после введения исследуемого соединения в группе животных, содержащихся в условиях нормоксии, и при появлении признаков острой гипоксии (беспокойное поведение, подергивание лап, попытка выбраться) в группе животных, подвергшихся воздействию острой гипоксии с гиперкапнией (ОГсГк). ОГсГк моделировали помещением крыс в герметичные индивидуальные камеры объемом 1 л до появления признаков острой гипоксии. Сыворотку крови получали путем центрифугирования цельной крови в течение 15 минут при 3000 об/мин.

Оценку показателей СРО окисления в сыворотке крови проводили методом хемилюминесценции на биохемиолюминометре 3606 (разработка конструкторскотехнологического бюро «Наука», Россия) с помощью программного обеспечения к прибору. Для инициации перекисного окисления липидов в исследуемый материал (0,1 мл плазмы, 0,2 мл фосфатного буфера (рН 7,4), 0,1 мл 12,5 мМ двухвалентного железа в виде соли FeSO₄×7H₂O), помещенный в темную камеру биохемиолюминометра, на 10 цикле вводили 0,1 мл 3% раствора перекиси водорода с последующей регистрацией хемилюминесценции в течение 50 циклов (1 цикл -0,1 секунды), при 37⁰C с учетом фоновой хемилюминесценции. В качестве оценочного показателя использовалась величина светосуммы, рассчитываемой как площадь под кривой свечения в относительных единицах. Данный показатель отражает интенсивность образования свободных радикалов и участие в процессе свободно-радикального окисления антиоксидантных систем.

Показатели гемограммы крови крыс (уровень гемоглобина, число эритроцитов и гематокрит) определяли на минифотометрах DP 300, DP 310 (DI-ALAB G.m.b.H., Австрия), используя

реактивы DIALAB GPT (ALT), mod. IFCC фирмы DIALAB (Австрия). Подсчет числа лейкоцитов проводили в камере Горяева.

При биохимическом исследовании определяли активность ферментов: аланинаминотрансферазы (АлАТ), аспартатаминотрансферазы (АсАТ), щелочной фосфатазы (ЩФ), лактатдегидрогеназы (ЛДГ) и уровень креатинина, мочевой кислоты, мочевины, общего белка. Исследования проведены на биохимическом анализаторе «Ultra» фирмы «Копе» (Финляндия) с использованием наборов реактивов фирмы Olvex (Россия).

Статистическую обработку результатов опытов проводили с помощью пакета прикладных программ Statistica Version 6.0.

Результаты и их обсуждение

Результаты исследования показали, что в условиях нормоксии величина светосуммы у контрольных животных составляла 67138,11 ± 9906 условных единиц. Соединение π Q 1968 в условиях нормоксии достоверно снижало показатель свечения до 51109 ± 7277. Препараты сравнения в условиях нормоксии не вызывали достоверных изменений величины светосуммы (табл. 1).

После воздействия ОГсГк в сыворотке крови контрольных животных наблюдалось угнетение хемилюминесцентного свечения по сравнению с интактными животными (нормоксия), что выразилось в снижении величины светосуммы в 1,3 раза, что может быть обусловлено адаптационным напряжением антиоксидантной системы сыворотки крови, проявляющимся в повышении содержания и активности биоантиоксидантов (супероксиддисмутазы, каталазы, церулоплазмина, α-токоферола и др.), способствующих компенсаторному повышению антирадикальной устойчивости липидов в условиях гиперпродукции прооксидантов. Выраженснижение активности свободноное радикального окисления в сыворотке крови наблюдалось после воздействия острой гипоксии при введении соединения πQ 1968 (уменьшение величины светосуммы в 1,25 раза). Действие соединения πQ 1968 соответствует по эффективности мексидолу и несколько уступает аскорбиновой кислоте (снижение – в 1,28 раза).

Таблица 1 Влияние πQ 1968, аскорбиновой кислоты и мексидола на интенсивность процессов свободнорадикального окисления

ευσυσησμουκαποίος σκαιπείαν				
Группа животных	Величина светосуммы, усл. ед.			
(n = 10)	Нормоксия	Гипоксия с гиперкапнией		
Контроль	$67138,11 \pm 9906$	$51480 \pm 6658*$		
πQ 1968	51109 ± 7277*	$41191 \pm 4089^{\Delta}$		
Аскорбиновая кислота	59114 ± 3151	$40087 \pm 9308^{\Delta}$		
Мексилоп	62483 + 12217	$41160 + 6118^{\Delta}$		

Примечание: *-p < 0.05 по отношению к контрольной группе.

 $\Delta - p < 0.05$ по сравнению с контролем при гипоксии

В ходе изучения гемограммы, было выявлено, что у контрольных животных значения показателей в условиях нормоксии соответствовали физиологическим величинам [1]. Введение соединения под лабораторным шифром πQ 1968 в условиях нормоксии не оказывало влияния на общее содержание лейкоцитов и гематок-

рита, но наблюдалось некоторое увеличение показателей содержания эритроцитов (на 5,36%) и гемоглобина (на 5,26%) (табл. 2). Однако эти изменения находились в пределах физиологической нормы для крыс. Препараты сравнения в условиях нормоксии достоверных изменений в гемограмме не вызывали.

Таблица 2 Влияние πQ 1968, аскорбиновой кислоты и мексидола на показатели гемограммы крыс в условиях нормоксии

Γ руппа животных (n = 10)	Контроль	πQ 1968	Аскорбиновая кислота	Мексидол		
Значение показателей, абс.(%)						
Эритроциты \times 10^{12} /л	$7,74\pm0,16$	8,16±0,27*	7,47±0,37	7,58±0,43		
	(100%)	(105,36%)	(96,53%)	(97,86%)		
Гемоглобин г/л	141,49±2,15	148,94±0,91*	139,28±1,77	139,05±2,17		
	(100%)	(105,26%)	(98,43%)	(98,27%)		
Лейкоциты $\times~10^9/\pi$	9,77±0,42	9,69±0,45	9,34±0,40	9,23±1,00		
	(100%)	(99,18%)	(95,58%)	(94,44%)		
Гематокрит %	43,02±0,56	44,18±1,23	43,30±0,80	42,23±1,00		
	(100%)	(102,68%)	(100,65%)	(98,16%)		

Примечание: *-p<0.05 по отношению к контрольной группе.

После воздействия острой гипоксии у животных наблюдалось достоверное увеличение содержания эритроцитов и гемоглобина на 8,80% и 7,82% (табл. 3). Возможно, изменения количества эритроцитов и гемоглобина обусловлены колебаниями гематокритного числа, что может свидетельствовать о перераспределении крови в организме животного. Так, показатель гематокрита у животных в группе гипоксия увеличивался на 7,98% относительно контроля, свидетельствуя о сгущении крови и нарушении гемодинамики. Выявленные изменения показателей гемограммы после воздействия ОГсГк согласуются с данными

литературы, из которых следует, что одним из срочных компенсаторных механизмов адаптации к гипоксии является увеличение кислородной емкости крови за счет усиления гемопоэза и выброса депонированной крови [2].

На фоне введения лекарственных веществ не происходило достоверных изменений гемограммы крыс в условиях гипоксии. Но после введения πQ 1968 наблюдалась тенденция к увеличению содержания эритроцитов и гемоглобина, что, вероятно, способствует лучшей доставке кислорода к тканям и увеличивает время жизни мышей при ОГсГк.

Таблица 3 Влияние πQ 1968, аскорбиновой кислоты и мексидола на показатели гемограммы крыс после воздействия ОГсГк

Rpoic nocite obsociations of cl R					
Группа животных $(n = 10)$	Контроль	Гипоксия	πQ 1968	Аскорбиновая кислота	Мексидол
Значение показателей, абс.(%)					
% к контролю % к гипоксии					
Эритроциты \times 10^{12} /л	7,74±0,16	8,42±0,25*	9,18±1,10	8,02±0,51	8,12±0,48
	(100%)	(108,80%)	(108,94%)	(107,36%)	(96,44%)
Гемоглобин г/л	141,49±2,15	152,55±1,61*	155,69±2,71	154,33±2,37	152,64±2,82
	(100%)	(107,82%)	(102,06%)	(101,16%)	(100,06%)
Лейкоциты \times 10^9 /л	9,77±0,42	9,13±0,86	9,50±0,58	9,18±0,75	9,27±1,10
	(100%)	(93,45%)	(104,02%)	(100,48%)	(101,54%)
Гематокрит %	43,02±0,56	46,46±0,48*	46,27±1,65	47,20±0,86	46,31±0,80
	(100%)	(107,98%)	(99,60%)	(101,59%)	(99,67%)

Примечание: *-p < 0.05 по отношению к контрольной группе.

Изучение биохимических показателей показало их соответствие у контрольных животных в условиях нормоксии значениям физиологической нормы для крыс [1]. Предварительное введение соединения πQ 1968 и препаратов сравнения в условиях нормоксии не приводило к достоверному изменению рассматриваемых показателей (табл. 4).

Данные, полученные при исследовании биохимических показателей сыворотки крови экспериментальных животных после воздействия ОГсГк, представлены в таблице 5, из которой следует, что ОГсГк вызывала повышение активности АлАТ и АсАТ животных на 52,23% и 70,05% соответственно, щелочной фосфатазы в 2

раза, что вероятно связано с нарушением функции печени и активизацией цитолиза. Показатель ЛДГ был увеличен на 56,75% по сравнению с контрольной группой, что свидетельствует о значительной активации процесса гликолиза в условиях недостатка кислорода, вследствие чего в крови не разрушается до нейтральных продуктов лактат, что и приводит к накоплению ЛДГ. Уровень мочевой кислоты повышался в 4 раза, что вероятно, обусловлено тем, что гипоксическое повреждение тканей индуцирует разрушение нуклеиновых кислот, сопровождающееся образованием пуриновых оснований, с последующей их модификацией. Кроме того, увеличился и уровень общего белка на 22,43%.

Таблица 4 Влияние πQ 1968, аскорбиновой кислоты и мексидола на биохимические показатели крови крыс в условиях нормоксии

κροού κροίς ο γενισούλα πορποκεί μ						
Γ руппа животных (n = 10)	Контроль	πQ 1968	Аскорбиновая кислота	Мексидол		
	Значение показателя, абс (%)					
АлАТ, ед/л	112,20±16,20	135,00±22,60	123,00±13,06	106,70±19,27		
	(100%)	(120,32%)	(109,63%)	(95,10%)		
АсАТ, ед/л	159,60±22,80	173,80±41,84	162,10±12,00	178,90±45,35		
	(100%)	(108,90%)	(101,57%)	(112,09%)		
ЩФ, ед/л	158,30±7,30	133,60±34,24	161,50±2,12	136,30±25,63		
	(100%)	(84,40%)	(102,02%)	(86,10%)		
ЛДГ, ед/л	735,80±78,56	796,30±60,50	793,30±56,45	732,10±54,33		
	(100%)	(108,22%)	(107,81%)	(99,50%)		
Мочевина,	8,50±1,00	8,17±1,37	8,40±1,06	8,30±0,69		
ммоль/л	(100%)	(96,12%)	(98,82%)	(97,65%)		
Мочевая кислота,	67,40±3,40	64,70±11,10	67,40±3,27	67,50±6,82		
мкмоль/л	(100%)	(95,99%)	(100%)	(100,15)		
Креатинин,	79,00±0,80	84,80±5,44	81,00±2,00	79,90±2,61		
мкмоль/л	(100%)	(107,34%)	(102,53%)	(101,14%)		
Общий белок, г/л	60,20±0,64	61,90±2,54	59,70±3,31	62,50±2,94		
	(100%)	(102,82%)	(99,17%)	(103,82%)		

Примечание: *-p<0.05 по отношению к контрольной группе.

Таблица 5 Влияние **пQ 1968, аскорбиновой кислоты и мексидола на биохимические показатели** крови крыс после воздействия **ОГ**СГк

крови крыс после возоеиствия ОГ сГ к							
Группа	Контроль	Гипоксия	πQ 1968	Аскорбиновая кислота	Мексидол		
животных		Значение показателя, абс.(%)					
(n = 10)	абс.	% к контролю	% к гипоксии				
АлАТ, ед/л	112 20 - 16 20	170,80±17,20*	101,20±18,20 [∆]	140,10±20,41 [∆]	131,70±27,22 [∆]		
	112,20±16,20	(152,23%)	(59,25%)	(82,03%)	(77,11%)		
АсАТ, ед/л	159,60±22,80	271,40±48,28 [∆]	190,30±29,90 ^{∆*}	195,80±26,20 [∆]	200,00±26,60 [∆]		
	139,00±22,80	(170,05%)	(70,12%)	(72,14%)	(73,69%)		
ЩФ, ед/л	158,30±7,30	349,40±64,20*	219,00±49,20 ^Δ	323,90±40,88	273,60±65,40		
		(220,72%)	(62,68%)	(92,70%)	(78,31%)		
ЛДГ, ед/л	735,80±78,56	1153,40±219,76*	776,90±104,92 [∆]	850,40±72,60 ^Δ	772,30±141,36 [∆]		
		(156,75%)	(67,36%)	(73,73%)	(66,96%)		
Мочевина,	8,50±1,00	9,04±1,44	8,15±0,42	8,51±0,33	$8,07\pm0,40$		
ммоль/л	8,30±1,00	(106,35%)	(90,15%)	(94,14%)	(89,27%)		
Мочевая		275,90±19,10*	234,40±23,24 ^Δ	247,00±9,80 [△]	244,70±5,56 [△]		
кислота,	67,40±3,40	(409,35%)	(84,96%)	(89,53%)	(88,69%)		
мкмоль/л		(407,3370)	(04,7070)	` ' '	` ′ ′		
Креатинин,	79,00±0,80	80,50±4,40	$71,40\pm8,16^{\Delta}$	$66,20\pm1,68^{\Delta}$	$67,80\pm2,08^{\Delta}$		
мкмоль/л	77,00±0,00	(101,90%)	(88,70%)	(82,24%)	(84,22%)		
Общий	60,20±0,64	$73,70\pm2,22^*$	$64,40\pm5,00^{\Delta}$	59,20±1,60 [∆]	64,00±2,40 [△]		
белок, г/л	00,2020,04	(122,43%)	(87,38%)	(80,33%)	(86,84%)		

Примечание: *- p<0,05 по отношению к контрольной группе

При применении лекарственных веществ на фоне ОГсГк наблюдалось снижение указанных показателей. Наиболее значительно предупреждало повышение активности АлАТ (на 40,75%), АсАТ (на 29,88%), ЛДГ (на 32,64%), мочевой кислоты (на 15,04%) и общего белка (на 12,62%) комплексное соединение аскорбиновой кислоты под лабораторным шифром πQ 1968. Мексидол и аскорбиновая кислота в меньшей степени, но также достоверно уменьшали концентрацию указанных показателей в сыворотке крови опытных животных. Так, мексидол способствовал снижению АлАТ, АсАТ, ЛДГ, мочевой кислоты и общего белка на 22,89; 26,31; 33,04; 11,31 и 13,16% соответственно, а аскорбиновая кислота на 17,97; 27,86; 26,27; 10,47 и 19,67% соответственно. Следует отметить, что только при применении соединения πQ 1968 достоверно снижался уровень ЩФ на 37,32%. Кроме того, применение πQ 1968 препятствовало повышению АлАТ, АсАТ, ЩФ, ЛДГ и общего белка выше показателей физиологической нормы крыс.

Выводы

Таким образом, в результате проведенного исследования установлено, что

комплексное соединение аскорбиновой кислоты под шифром πQ 1968, обладающее выраженным антигипоксантным действием, проявляет антиоксидантные свойства в условиях нормоксии, и особенно в условиях гипоксии, о чем свидетельствует снижение величины светосуммы хемилюминисцентного свечения. Наблюдаемый антиоксидантный эффект данного соединения, возможно, является не только результатом его прямого влияния на процессы пероксидации липидов, но и опосредован стабилизацией энергетического обмена клетки, что было подтверждено нами ранее [3]. ОГсГк существенно изменяет показатели гемограммы (возрастает уровень эритроцитов, гемоглобина, гематокрита) и биохимические показатели крови экспериментальных животных (возрастает активность АлАТ, АсАТ, ЩФ, ЛДГ, уровень мочевой кислоты и общего белка), что свидетельствует о том, что гипоксия является мощным стрессорным фактором и запускает каскад срочных механизмов адаптации к гипоксии, проявляющиеся усилением гемопоэза, выброса депонированной крови, увеличением гликолиза, активацией симпато-адреналовой системы. Исследуемое соединение πQ

 $^{^{\}Delta} - p < 0.05$ по отношению к группе гипоксия

1968 не оказывает выраженного влияния на показатели гемограммы в условиях гипоксии, но приводит к достоверному снижению активности АлАТ, АсАТ, ЩФ, ЛДГ и уровня мочевой кислоты, общего белка. Положительная динамика показателей АлАТ, АсАТ, ЩФ может свидетельствовать о замедлении процессов цитолиза и возможном гепатопротекторном действии изучаемого соединения.

Литература

- 1. Ананич И. В. Биохимические характеристики крови крыс / И.В. Ананич, М.А. Дерхо, С.Ю. Концевая // Ветеринарная клиника. 2008. №10. С.18-19.
- 2. Зюзьков Г.Н. Гуморальные механизмы регуляции эритропоэза при гипоксии / Г.Н. Зюзьков, А.М. Дыгай, Е.Д. Гольдберг // Бюл. эксперим. биологии и медицины. 2005. № 2. С. 133-137.
- Производные аскорбиновой кислоты как антигипоксанты природного происхождения / Е.О. Маркова [и др.] // Патогенез: науч.-практ. журн. – 2011. – Т. 9, №3. – С. 45. – (Сод. журн.: Тез. докл. VI Рос. конф. с Междунар. участием «Гипоксия: механизмы, адаптация, коррекция». – М., 2011).

- Антигипоксическая активность комплексных соединений на основе аскорбиновой кислоты / В.Е. Новиков [и др.] // Обзоры по клинической фармакологии и лекарственной терапии. – СПб., 2011. – Т. 9, №2. – С. 35-41.
- 5. Пат. 2461376 РФ, МПК. Антигипоксантное средство / В.Е. Новиков, Е.О. Маркова, Э.А. Парфенов. — опубл. 20.09.2012, бюл. 26.
- 6. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / под ред. Р.У. Хабриева. М., 2005. 832 с.
- Титов В.Н. Методические вопросы и диагностическое значение определения перекисного окисления липидов в липопротеинах низкой плотности. Олеиновая жирная кислота как биологический антиоксидант (обзор литературы) / В.Н. Титов, Д.М. Лисицын, С.Д. Разумовский // Клинич. лаб. диагностика. 2005. №4. С. 3-10.
- 8. Улитко М.В. Роль моноцитовмакрофагов в адаптивных реакциях кроветворной ткани при действии на организм экстремальных факторов: автореф. дис. ... канд. биол. наук / М.В. Улитко. – Екатеринбург, 2008. – 24 с.

TO THE MECHANISM OF ACTION OF NEW ANTIHYPOXIC COMPLEX COMPOUND OF ASCORBIC ACID

V.E. Novikov, E.O. Markova, E.A. Parfenov

In the experiment on rats a new derivative of ascorbic acid with antihypoxic activity was learned. It is shown that a dose of 100 mg / kg in normoxia and after exposure to acute hypoxia, it reduces the activity of free radical oxidation, has no effect on the hemogram, but leads to a significant reduction of ALT, AST, alkaline phosphatase, LDG, the level of uric acid and total protein after acute hypoxia, which is of some importance in its hypoxic effect.

Key words: antihypoxants, free radical oxidation, hemogram, biochemical parameters.

Новиков Василий Егорович – д-р мед. наук, проф., заведующий кафедрой фарма-кологии с курсом фармации ФПК и ППС, ГБОУ ВПО Смоленская Государственная Медицинская Академия Минздрава России.

214019, г. Смоленск, ул. Крупской, д. 28.

E-mail: nau@sgma.info.

Маркова Екатерина Олеговна – ст. преподаватель кафедры общей и медицинской химии, соискатель кафедры фармакологии с курсом фармации ФПК и ППС, ГБОУ ВПО Смоленская Государственная Медицинская Академия Минздравсоцразвития РФ.

214019, г. Смоленск, ул. Крупской, д. 28.

E-mail: smeshik-kate@mail.ru.

Парфенов Эдгар Андреевич — д-р хим. наук, вед. научный сотрудник, Российский Онкологический Научный Центр имени Н.Н. Блохина Российской Академии Медицинских Наук.

115478, г. Москва, Каширское шоссе, д. 24.

E-mail: phcao@yandex.ru.