Физика волновых процессов и радиотехнические системы

УДК 537.8

Пространственно-частотный метод определения широкополосных полей первичных и вторичных источников по планарным измерениям

А.В. Кириленко

Рассматривается метод определения широкополосных полей излучения первичных и вторичных источников в пространственно-временной области на основе планарных измерений. Учитываются пространственно-частотные свойства зоны.

В настоящее время интерес к методам восстановления импульсных электромагнитных полей связан не только с экспериментальным исследованием широкополосных антенн, но и с необходимостью решать задачи электромагнитной совместимости (ЭМС) систем и устройств. Как известно, тактовая частота процессоров современных персональных компьютеров превышает 3ГГц, что позволяет рассматривать подобные устройства как источник помехозамедленности в задачах внутрисистемной (или даже межсистемной) ЭМС. Импульсный характер исследуемых источников требует привлечения широкополосных методов восстановления полей [1]. В некоторых случаях, при возбуждении исследуемых антенн импульсами, длительность которых не превышает нескольких пс, можно с помощью специальной измерительной техники и обработки зондируемого сигнала во временной области исключить влияние вторичного поля [2]. При исследовании на ЭМС импульсных излучающих систем создать приведенные выше условия измерения, как правило, не представляется возможным, что побуждает использовать пространственно-частотные методы восстановления полей.

Совершенствуя методы исследования излучающих систем по измерениям на экранированных компактных полигонах, следует учитывать как можно больше влияющих на точность факторов, что позволит снизить методические погрешности определения параметров излучения. Как в монохроматическом [3], так и в широкополосном случае, наряду с учетом влияния вторичных полей, необходимо учитывать пространственно-частотные свойства зоны.

В декартовой системе координат \((x, y, z) \) наложение электрического и магнитного полей первичных и вторичных источников в частотной области определяются следующим образом [4]:

\[
\begin{align*}
\mathbf{E}^x(x, y, z, \omega) &= \int_{\zeta} \int_{\eta} \frac{e^{i\omega z}}{c^2} \left[\mathbf{A}(\zeta, \eta, \omega) \right] e^{-i\omega y - i\omega x} d\zeta d\eta, \\
\mathbf{F}(\zeta, \eta, \omega) &= \int_{\zeta} \int_{\eta} \left[\mathbf{A}(\zeta, \eta, \omega) \right] e^{-i\omega y - i\omega x} d\zeta d\eta, \\
\mathbf{H}^y(x, y, z, \omega) &= \int_{\zeta} \int_{\eta} \left[\mathbf{A}(\zeta, \eta, \omega) \right] e^{-i\omega y - i\omega x} d\zeta d\eta,
\end{align*}
\]

(1)

gде \(\zeta = \frac{1}{c} k_x \), \(\eta = \frac{1}{c} k_y \), \(\gamma = \frac{1}{c} k_z \), \(\gamma = \frac{1}{c} \sqrt{\zeta^2 - \eta^2} \), \(\zeta' = \zeta - \eta e_y - \gamma e_z \), \(k_x, k_y, k_z \) — пространственные частоты; \(e_x, e_y, e_z \) — единичные векторы декартовой системы координат; \(\omega \) — круговая частота излучения; \(\mu \) — магнитная проницае-
мость среды; $c \approx 3 \cdot 10^8$ м/с — скорость распространения электромагнитного взаимодействия в вакууме; $\hat{A}(\zeta, \eta, \omega)$ и $\hat{F}(\zeta, \eta, \omega)$ — подлежащие определению векторные амплитудные спектры первичного (излученного) и вторичного (пасс-сения) полей, соответственно. Обычно пространственный спектр ограничивается областью определения однородных плоских волн и, следовательно, область вещественных значений независимых пространственных частот ζ_x и ζ_y ограничивается окружностью единичного радиуса. При этом k_{z_1}, k_{y_1} и k_{z_2} определяются как направляющие косинусы однородной плоской волны: $k_{z_1} = \sin \theta \cos \varphi$, $k_{y_1} = \sin \theta \sin \varphi$, $k_{z_2} = \cos \theta$, где φ и θ — угол места и азимут в сферической системе координат.

Во временной области выражения для векторов поля могут быть получены с помощью интеграла Фурье:

$$
\begin{align*}
\hat{E}(x,y,z,t) &= \int_{-\pi}^{\pi} \hat{E}(x,y,z,\omega) e^{i\omega t} d\omega, \\
\hat{H}(x,y,z,t) &= \int_{-\pi}^{\pi} \hat{H}(x,y,z,\omega) e^{i\omega t} d\omega,
\end{align*}
$$

где t — время, а ω_{max} — наибольшее значение частоты. Подставляя (1) в (2) и используя свойства преобразования Фурье, получим формулы, определяющие (как и выражения (2)) результатирующее поле в пространственно-временной области:

$$
\begin{align*}
\tilde{E}(x,y,z,t) &= -\frac{\partial^2}{\partial \zeta_x^2} \tilde{A}(\zeta_x, \eta, t) + \\
&+ \tilde{F}(\zeta_x, \eta, t) d\zeta d\eta, \\
\tilde{H}(x,y,z,t) &= -\frac{1}{\mu} \int \frac{\partial^2}{\partial \zeta_x^2} [\tilde{A}(\zeta_x, \eta, t - \zeta_x \hat{r}) + \\
&+ \tilde{F}(\zeta_x, \eta, t - \zeta_x \hat{r})] d\zeta d\eta,
\end{align*}
$$

где $\hat{r} = x \hat{e}_x + y \hat{e}_y + z \hat{e}_z$.

Основываясь на соотношениях, полученных для монохроматического случая [3], наводимое результатирующим полем напряжение на входе связанного с зондом приемника (рис.1) определяется равенством:

$$
u(x,y,z_0,t) = \int_{|z|<z_{\text{max}}} \frac{\omega^2}{1 - \Gamma(\omega) \Gamma'(\omega)} \times
\int_{\zeta} \int_{\eta} \hat{E}(\zeta, \eta, \omega) \hat{A}(\zeta, \eta, \omega) e^{-i\omega z} + \\
+ \hat{E}^*(\zeta, \eta, \omega) \hat{F}(\zeta, \eta, \omega) e^{i\omega z} d\zeta d\eta d\omega,$$

где $\Gamma_i(\omega)$ — коэффициент отражения трактовой волны антенны—зонда от нагрузки (входного сопротивления приемного устройства); $\Gamma(\omega)$ — коэффициент отражения трактовой волны от выхода антенны-зонда; $\hat{R}^e(\zeta, \eta, \omega)$ и $\hat{R}^t(\zeta, \eta, \omega)$ — векторные характеристики приема (векторные диаграммы направленности на прием) зонда в передней и задней полусферах соответственно.

Воспользовавшись свойством $\text{div}\hat{E} = 0$ и применив его к частным решениям, можно получить следующие равенства:

$$
\begin{align*}
\hat{R}^e(\zeta, \eta, \omega) \hat{A}(\zeta, \eta, \omega) &= \frac{1}{\gamma}(R_{xy}^e(\zeta, \eta, \omega) \times \\
&\quad \times A_x(\zeta, \eta, \omega) + \\
&\quad + R_{xy}^t(\zeta, \eta, \omega) A_y(\zeta, \eta, \omega)),
\end{align*}
$$

где

$$
\begin{align*}
R_{xy}^e(\zeta, \eta, \omega) &= R_x(\zeta, \eta, \omega) \left(\frac{1}{c^2} - \eta^2 \right) + \\
&\quad + \eta \zeta R_y(\zeta, \eta, \omega),
\end{align*}
$$

Подстановка (4) в (5) приводит к следующему уравнению:

$$
u(x,y,z_0,t) = \int_{|z|<z_{\text{max}}} \frac{\omega^2}{1 - \Gamma(\omega) \Gamma'(\omega)} \times
\int_{\zeta} \int_{\eta} \frac{1}{c^2} - \zeta^2 - \eta^2 d\zeta d\eta d\omega,$$

где ζ и η — комплексные частоты.

Рис. 2
\begin{align*}
(7) \quad & x(R_{y\phi}^\alpha(\zeta, \eta, \omega)A_x(\zeta, \eta, \omega) + \\
& + R_{y\phi}^\alpha(\zeta, \eta, \omega)A_y(\zeta, \eta, \omega)e^{-i\omega t} + \\
& + (R_{y\phi}^\alpha(\zeta, \eta, \omega)F_x(\zeta, \eta, \omega) + \\
& + R_{y\phi}^\alpha(\zeta, \eta, \omega)F_y(\zeta, \eta, \omega))e^{-i\omega t}) \times \\
& \times e^{-i\omega x - i\omega y} \times e^{\omega t} d\zeta d\eta d\omega.
\end{align*}

Обратное преобразование Фурье приводит к равенству:
\begin{align*}
(8) \quad & (R_{y\phi}^\alpha(\zeta, \eta, \omega)A_x(\zeta, \eta, \omega) + \\
& + R_{y\phi}^\alpha(\zeta, \eta, \omega)A_y(\zeta, \eta, \omega)e^{-i\omega t} + \\
& + (R_{y\phi}^\alpha(\zeta, \eta, \omega)F_x(\zeta, \eta, \omega) + \\
& + R_{y\phi}^\alpha(\zeta, \eta, \omega)F_y(\zeta, \eta, \omega))e^{-i\omega t} = \\
& = K(\omega)\frac{\gamma^2}{\delta^2 + \varphi^2} \int_{\frac{-\delta}{2}}^{\frac{\delta}{2}} \int_{\frac{-\varphi}{2}}^{\frac{\varphi}{2}} \int u(x, y, z, t) \times \\
& \times e^{i\omega x + i\omega y} \times e^{-\omega t} dxdydt,
\end{align*}
где $K(\omega) = 1 - \Gamma(\omega)\Gamma_{\omega}(\omega)$; \(\gamma^2 = \frac{1}{c^2} - \zeta^2 - \eta^2\).

Определить составляющие $A_x(\zeta, \eta, \omega)$, $A_y(\zeta, \eta, \omega)$ и $F_x(\zeta, \eta, \omega)$, $F_y(\zeta, \eta, \omega)$ можно из следующей системы:
\begin{equation}
(9) \quad H q(\zeta, \eta, \omega) = y,
\end{equation}
где
\begin{align*}
H = & \begin{bmatrix}
H_{x\phi}^{\alpha}(\zeta, \eta, \omega) & H_{y\phi}^{\alpha}(\zeta, \eta, \omega) & H_{x\phi}^{\alpha}(\zeta, \eta, \omega) & H_{y\phi}^{\alpha}(\zeta, \eta, \omega) \\
H_{y\phi}^{\alpha}(\zeta, \eta, \omega) & H_{x\phi}^{\alpha}(\zeta, \eta, \omega) & H_{y\phi}^{\alpha}(\zeta, \eta, \omega) & H_{x\phi}^{\alpha}(\zeta, \eta, \omega) \\
H_{x\phi}^{\alpha}(\zeta, \eta, \omega) & H_{y\phi}^{\alpha}(\zeta, \eta, \omega) & H_{x\phi}^{\alpha}(\zeta, \eta, \omega) & H_{y\phi}^{\alpha}(\zeta, \eta, \omega) \\
H_{y\phi}^{\alpha}(\zeta, \eta, \omega) & H_{x\phi}^{\alpha}(\zeta, \eta, \omega) & H_{y\phi}^{\alpha}(\zeta, \eta, \omega) & H_{x\phi}^{\alpha}(\zeta, \eta, \omega)
\end{bmatrix},
\end{align*}
\begin{align*}
q(\zeta, \eta, \omega) = & \begin{bmatrix}
A_x(\zeta, \eta, \omega) \\
A_y(\zeta, \eta, \omega) \\
F_x(\zeta, \eta, \omega) \\
F_y(\zeta, \eta, \omega)
\end{bmatrix},
y = \begin{bmatrix}
y'(z_{01}, \zeta, \eta, \omega) \\
y'(z_{02}, \zeta, \eta, \omega) \\
y'(z_{12}, \zeta, \eta, \omega) \\
y'(z_{12}, \zeta, \eta, \omega)
\end{bmatrix},
y'(z_{01}, \zeta, \eta, \omega) = \frac{\gamma^2 K(\omega)}{8\pi^3} \int_{\frac{-\delta}{2}}^{\frac{\delta}{2}} \int_{\frac{-\varphi}{2}}^{\frac{\varphi}{2}} \int u'(x, y, z, t) \times \\
& \times e^{i\omega x + i\omega y} \times e^{-\omega t} dxdydt
\end{align*}

\begin{align*}
(10) \quad & u'(x, y, z, t), \ i = 1, 2 — \text{сигнал, пропорциональный входному напряжению приемника зонда при двух взаимно ортогональных плоскостях поляризации. Аргументы } \zeta, \eta \text{ и } \omega \text{ элементов матрицы } H \text{ опущены. Из (9) параметрический вектор } q(\zeta, \eta, \omega) \text{ определяется следующим образом:}
q(\zeta, \eta, \omega) = H^{-1}y.
\end{align*}

\begin{align*}
(11) \quad & A_x(\zeta, \eta, \omega) = -\frac{1}{\gamma} (\zeta A_x(\zeta, \eta, \omega) + \eta A_y(\zeta, \eta, \omega)),
F_x(\zeta, \eta, \omega) = -\frac{1}{\gamma} (\zeta F_x(\zeta, \eta, \omega) + \eta F_y(\zeta, \eta, \omega)).
\end{align*}

С помощью найденного амплитудного спектра первичного поля можно определить, например, поле исследуемого устройства в представляющей интерес пространственно-временной области:
\begin{align*}
(12) \quad & \vec{E}(x, y, z, t) = \frac{1}{c} \int \int \int 0 \vec{A}(\vec{z}, \vec{\eta}, \omega) \times \\
& \times e^{i\omega x + i\omega y} \times e^{-\omega t} d\zeta d\eta d\omega,
\end{align*}
где $\vec{z} = c\zeta$, $\vec{\eta} = c\eta$, $\gamma = cy$. Переменные \vec{z} и $\vec{\eta}$ изменяются в интервале от -1 до 1.

Расстояние R до области дальней зоны в широкополосном слуазе может быть определено условием:
\begin{align*}
(13) \quad & R \geq \frac{\pi D^2 \omega_0^2}{c},
\end{align*}
где D — наибольший линейный размер источника излучения. Применение принципа стационарной фазы [5] позволяет, для случая $r \geq R$ ($r = \sqrt{x^2 + y^2 + z^2}$), преобразовать (12) к следующему равенству:
\begin{align*}
(14) \quad & \vec{E}(\vec{r}, t) \propto = \frac{2\pi}{r} \frac{1}{c} \int \int \int \vec{A}(\vec{z}, \vec{\eta}, \omega) \times \\
& \times e^{i\omega x + i\omega y} \times e^{-\omega t} d\zeta d\eta d\omega.
\end{align*}
На рис. 2-4 приведены результаты компьютерного моделирования для одной из частотных гармоник \(f = \omega / 2\pi = 3\pi f_\text{ц} \), подтверждающие эффективность рассматриваемого метода. В качестве источника излучения рассматривалась сдвоенная дипольная решетка из 121 элемента (11x11), а в качестве вторичного источника — проводящая плоскость, отстоящая от апертуры решетки на 7 м. На рис. 2 приведена пространственная диаграмма амплитудного распределения дальнего поля, восстановленная с помощью метода, не учитывающего влияние вторичного поля, на рис. 3 — с учетом вторичного поля, а на рис. 4 — распределение, полученное расчетным путем (эталонное распределение). На рис. 2 сплошной жирной линией обозначено сечение амплитудного распределения поля, восстановленное с учетом влияния отраженного поля (изложенный выше метод), штриховой линией — при допущении об уединенности источника, сплошной тонкой — сечение амплитудного распределения, полученное расчетным путем (эталонное сечение).

Возможность разделения пространственно-частотных спектров полей первичных и вторичных источников по измерениям обусловленного ими суммарного поля позволяет раздельно определять первичные и вторичные поля. Восстановленное вторичное поле позволяет определять характеристики рассеяния как антенн, так и более сложных радиолокационных объектов.

Литература

Spatial-Frequency Method for Determining Wideband Fields of Primary and Secondary Sources According to Planar Measurements

A.V. Kirpanev

The paper considers the method for determining wideband radiation fields of the primary and secondary sources in the spatial-frequency area no the basis of planar measurements. The spatial-frequency properties of the probe are taken into account.
Новое издание

Неганов В.А., Яroveй Г.П.
Теория и применение устройств СВЧ: учебн. пособие для вузов / под ред. В.А. Неганова.
ISBN 5-256-01812-4

В учебном пособии рассматриваются методы проектирования и конструктивной реализации устройств СВЧ: линий передачи различных видов, резонаторов, согласующих и трансформирующих устройств, фильтров, фазовращателей, аттенюаторов, тройниковых соединений, направленных ответвителей, различных мостовых соединений, ферритовых устройств (вентилей, циркуляторов, фазовращателей) и СВЧ-устройств на полупроводниковых диодах (умножителей, смесителей, переключателей, выключателей). Приводятся примеры применения устройств СВЧ в радиосвязи, радиолокации, измерительной аппаратуре и т.д. В книгу вошел оригинальный материал, полученный авторами. Учебное пособие может использоваться как справочник по устройствам СВЧ.

Для специалистов в области теории и техники СВЧ, преподавателей вузов, докторантов, аспирантов, студентов старших курсов радиотехнического и радиофизического профиля.

Табл. 17, ил. 421, библ. 53 назв.

ББК 32.840
УДК 621.396.67
Н 41