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MAGLEV FREIGHT – ONE POSSIBLE PATH  
FORWARD IN THE U.S.A.

Background: As high-speed rail and other transportation technologies are moving 
forward and gaining funding in the United States, the push for MagLev is not receiving the 
necessary support that would make it a viable alternative in the near future. Major changes in 
the approach to implementing MagLev could make a better case for it, specifically for carrying 
freight. One alternative that has been considered in the past is the modification of existing freight 
railways to support MagLev. For this to be economically feasible and practical, such a solution 
has to be able to support both conventional freight trains and MagLev freight. 

Aim: The successful application of Partially Magnetically-Levitated Freight (PMLF) 
technology achieved by integrating superconducting MagLev technology with current railroad 
design and operations. 

Methods: A MagLev freight system that is envisioned to use existing rail routes must 
be designed to be compatible with the existing railway infrastructure. To accomplish this, every 
component utilized by the railroads must be examined in detail to determine if and how it could 
be affected by the proposed PMLF. In addition, components that will need to be modified for 
PMLF operation must undergo a retrofit design and testing process. The design scope must 
also include an examination of all existing tasks and activities that are being performed by the 
railroads such as track maintenance and repair. Any procedures that affect or are affected by the 
addition of PMLF will need to be modified. Finally, superconducting MagLev technology must 
be optimized and advanced for application to PMLF. 

Opinions and Discussions: The dual use of railway lines has substantial cost advantages 
when compared to building new dedicated MagLev freight corridors. In fact it could make the 
entire proposition very appealing if proven to be technically feasible. However, there are certain 
limitations and concerns that would cause policy makers to reject such a proposal unless such 
obstacles can be shown to be temporary and non-critical. Essential rail installations such as 
switches are presently difficult to modify in a way that would ensure reliable functionality 
for both MagLev and conventional freight trains, and grade crossings pose safety risks. It is 
difficult to envision the tremendous leap forward of merging MagLev with existing freight 
rail lines when much more basic technologies such as positive train control are not even fully 
implemented. Consequently, it is a challenge to advance MagLev in the United States where new 
dedicated freight corridors are considered to be cost-prohibitive and dual use railway lines pose 
uncertainties that railroad companies simply do not want to solve. However, there is one more 
solution has not been considered that would allow a MagLev freight train to navigate on existing 
railway infrastructure without disrupting traditional rail utilization. This solution is a partially 
magnetically-levitated freight train. 

Results: After reviewing the fundamental components, systems and operations of the 
railways in the United States, it will be feasible and practical to introduce magnetic levitation 
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technology to assist in moving freight on existing rail routes. PMLF trains will be able to take 
advantage of magnetic levitation on sections where the track has been upgraded to allow its use 
and much higher speed while still being able to travel on unmodified sections with the same 
speed as traditional trains.

Conclusion: Modifying existing freight rail with magnetic “quasi-lift” technology is a 
much lower cost alternative to building an entirely new MagLev infrastructure. This alternative 
will provide very important benefits including enhancing safety in the rail industry. In its first 
phase of implementation, the proposed PMLF system will levitate a significant portion of the 
weight of the train but still utilize the existing steel rails for traction and guidance. The most 
evident advantages of this approach include reduced wear on rail and other supporting elements, 
and a significant reduction in friction and energy use. Locomotives, freight cars and all other 
components could be made lighter and travel speeds will increase dramatically due to less 
impact and other effects. Later phases of implementation will focus on magnetic traction and 
guidance. The acceptance and success of this partially levitated system will eventually lead to 
fully levitated freight transport technology. Sometimes it is necessary to take smaller steps to 
achieve the desired future. 

Keywords: MagLev Freight, MagLev Cargo, Partially Magnetically-Levitated Freight, 
Positive Train Control

INTRODUCTION

This is the first of what is hoped will be a series of papers that focuses 
on partial magnetic levitation as the most viable way forward to the transport 
of goods using MagLev freight in the United States. The basic concept of the 
system is presented in this paper. The key design parameter that will be maintained 
throughout the development of this system is compatibility with existing track 
infrastructure. This is a crucial aspect that this introductory paper focuses on. 
Using existing rail lines will allow the advancement of MagLev technology for the 
purpose of carrying cargo more efficiently and in greater quantities than would be 
possible with the current generation of freight trains. This advancement will also 
have a relatively low cost. Furthermore, partial magnetic levitation will help to 
optimize and to maximize the system safety components. Safety features already 
in place for existing rail infrastructure will be utilized and married to additional 
safety mechanisms that magnetic levitation can provide, enhancing the overall 
redundancy in safety. This is critical since freight trains using partial magnetic 
levitation will need to eventually travel many times faster than their traditional 
steel-on-steel counterparts in order to justify the investment. Accidents in emerging 
technologies are scrutinized to a greater extent than in established technologies 
which will ultimately affect funding and progress. 

This is not the first attempt at proposing to modify existing rail lines for the 
purpose of MagLev freight but it may be the first that bases this approach on partial 
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magnetic levitation. In fact there have been several different proposed solutions 
presented by various research organizations and private institutions in numerous 
countries that sought to utilize existing rail lines for MagLev. In the United States, 
the proposed MAGLEV 2000 system was based on superconducting magnetic 
quadrupoles that would allow the MagLev vehicle to travel on a planar surface 
such as existing railroad tracks with added aluminum loop panels. This solution 
and others represented almost a quantum leap from existing railway technology. 
A quantum leap can be very expensive and also easy to derail if problems abound 
during development and implementation. 

Partial magnetic levitation provides a more gradual and practical approach 
rather than a revolutionary paradigm shift. Positive aspects of partial magnetic 
levitation in freight transport such as lower track maintenance and repair costs 
will help reduce the overall operating cost of freight trains assisted with magnetic 
levitation. Energy costs will be much lower as well. The major negative aspect of 
this gradual approach is that the greatest advantages of using MagLev such as high 
speeds will take longer to realize. A very important positive aspect of this gradual 
approach is that the three main components of MagLev technology – levitation, 
guidance, and propulsion – can be safely tested independently of each other and 
without the need for any expensive test tracks. Everything can be evaluated using 
existing railroad tracks with small and inexpensive modifications. Although the 
initial phase of the research and testing will focus on magnetic levitation, later 
phases will integrate magnetic guidance and magnetic propulsion into this proposed 
system and all three components will be continuously tested and improved until 
one day the technology will demonstrate that it can safely and effectively be used 
in full MagLev mode to transport cargo on existing rail corridors at tremendous 
speeds and efficiencies. 

PARTIALLY MAGNETICALLY-LEVITATED  
FREIGHT TRAIN CONCEPT

The success of using a partially magnetically-levitated freight (PMLF) 
system on existing rail corridors in the United States will depend on the ability of 
this system to be integrated into the existing rail infrastructure without impeding 
on the operation of this infrastructure. 

In determining the most effective and practical adaptation of magnetic 
levitation technologies for implementation of PLMF on existing rail corridors, it 
is important to consider not only the components of the existing rail infrastructure 
but also the operational maintenance and repair activities that are constantly 
being performed on this infrastructure. Geometric constraints also need to be 
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considered. A brief synopsis of componentry and activities that are essential to 
the existing rail infrastructure is presented in below in the EXISTING RAILWAY 
INFRASTRUCTURE section of this paper. Major North American freight railroads 
are shown in Fig. 1. 

The first question that must be considered is which MagLev technology is 
the most capable of fulfilling its function in the PLMF system while satisfying 
the constraints established by the existing railway infrastructure or if this is even 
reasonably possible. 

The “parts bin” for MagLev currently includes four different systems [2]. 
The first system uses electromagnets on the MagLev vehicle that are attracted to 
metal rails on the guideway. The second system consists of permanent magnets 
on the MagLev vehicle and on the guideway and uses repelling forces between 
these permanent magnets for levitation. The third system uses permanent magnets 
on the MagLev vehicle and aluminum loops on the guideway and generates 
repelling forces by inducing currents in the aluminum loops. The fourth system 

Fig. 1. Ownership of Major North American Rail Lines, 2017 [1]
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uses superconducting magnets on the MagLev vehicle that induce currents in the 
aluminum loops that are embedded in the guideway to generate repelling forces. 

Clearly PMLF must utilize repelling magnetic forces for partial levitation 
since the rail track is a horizontal surface. The first system uses attractive magnetism 
and is not applicable. The second system that places magnets on the track is not 
very promising because it would be prohibitively expensive to implement. The 
intent is to have many thousands of miles of rail corridors available for PMLF so 
that placing metal loops on the track will be orders of magnitude less expensive 
than placing magnets on the track if such a quantity of permanent magnets can be 
even produced. In addition, track maintenance and repair operations will be much 
more complex if the magnets will have to be removed and replaced before and after 
such operations. The third system will not be practical because the gap between the 
permanent magnets on PMLF vehicles and the metal loops installed on the track 
will need to be on the order of about 0.13 m (½ inch.) The same limitation applies 
to the first and second system. In addition, the lifting power of permanent magnets 
is limited and could not generate the 80 % to 99 % levitation that is required to 
make PMLF advantageous. Superconducting magnets have this capability of lifting 
very heavy loads and with larger separation distances between magnets and coils. 
Thus, the fourth system is the only existing MagLev technology that is suitable 
for this application.

In addition to being very powerful with low energy requirements, 
superconducting magnets will allow system operation with gaps between magnets 
and coils as large as 0.1 m (4 inches) or more. Bare aluminum coils or coils with thin 
protective cover would not last very long after being attached to the railroad tracks 
and will likely be stolen due to the cost of aluminum. Aluminum coils that will have 
currents induced by superconducting magnets may be embedded in concrete panels 
with an inch or more of protective cover, leaving 0.76 m (3 inches) for the gap 
between the superconducting magnets under the PMLF vehicles and the concrete 
panels that are attached to the track ties. This should provide sufficient tolerance 
for the variability in the track’s vertical alignment. It is also important to note 
that the track ties are not rigidly supported and could deflect 0.03 m (1/8 inch) or 
more vertically due to actions of concentrated wheel loads from traditional freight 
trains. The concrete panels must be able to accommodate differential motion and 
settlement between adjacent ties. The concrete panels with embedded aluminum 
coils must also be durable and capable of withstanding various track maintenance 
activities such as rail grinding. It is recommended that the concrete panels use 
steel pre-stressing strands in both horizontal directions to enhance durability and 
flexibility. Certain maintenance activities such as ballast tamping may require the 
panels to be temporarily removed. The ample construction tolerance due to the 
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large 0.1 m (4 inch) gap that is allowed means that track maintenance and repair 
crews can remove and re-attach the concrete panels containing the coils without the 
need for expensive surveys and vertical adjustments. The next question becomes 
where should the panels with aluminum loops be positioned on the track – inside 
the rails or outside the rails or both?

The least expensive solution for positioning concrete panels with aluminum 
loops would be to place a single strip of panels between the rails. However, this 
configuration will not be as stable as placing the panels on the outside of the rails 
when the PMLF train is in a state of nearly full levitation. The most effective and 
robust solution would be to position the panels both on the inside and outside of the 
rails but this would be a very expensive solution. It seems that the optimal solution 
in terms of cost and function is to place the concrete panels with aluminum coils 
on the outside of the rails. Placing the coil panels used for magnetic levitation on 
the outside of the rails will also allow plenty of space between the rails for testing 
future equipment such as traction and guidance panels if it is determined that the 
coil panels outside the rails will not be adequate for fulfilling these functions. It 
is also important to note that failure of the coil panels on the track or failure of 
the superconducting magnets on the PMLF train will not result in damage to the 
PMLF train or track since the PLMF train will be able to carry its weight on wheels. 

This fact that the PMLF system uses flanged wheels in addition to magnetic 
levitation is a tremendous advantage in terms of adapting the PMLF system to the 
various railway track devices and components such as turnouts, crossovers and 
crossings. Guidance of the PMLF train at these locations will be identical to the 
mechanical guidance used by traditional freight trains. It may also be very difficult 
to install loop panels at these locations, making mechanical guidance essential. 
As a result, the PMLF train will need to rely on its wheels to carry its full load at 
these locations. Rather than trying to solve the problem of installing loop panels 
at these challenging and discrete locations, relying on flanged wheels will allow 
the focus of PMLF development to be placed on preparing the remaining 99 % of 
the rail route for effective PMLF operation.

Eliminating 90 % or more of the normal contact force between the PMLF 
trains wheels and the supporting steel track will result in a very significant drop if 
friction. Moreover, PMLF cars will be significantly lighter than traditional freight 
rolling stock because magnetic levitation will support over 90 % of the PMLF 
cars’ weight during 99 % of the travel time, allowing the various mechanical 
and structural components to be designed and manufactured to a much lighter 
duty service than traditional freight rolling stock, including wheels and bearings. 
In addition, PMLF trains are intended to transport cargo at high speeds so it is 
unlikely that PMLF will be initially used for transporting heavy bulk items such as 



123 ТРАНСПОРТНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ
TRANSPORTATION SYSTEMS AND TECHNOLOGY 

ОРИГИНАЛЬНЫЕ СТАТЬИ
ORIGINAL STUDIES

Received: 15.08.2018. Revised: 10.09.2018. Accepted: 01.10.2018. This article is available under license    
Transportation Systems and Technology. 2018;4(3):117-133 doi: 10.17816/transsyst201843117-133

coal, stone, cement, wood and other materials that do not require rapid transport. 
Energy efficiency for transporting items that require refrigeration and insulation 
will benefit significantly from PMLF, especially cryogenic liquids and liquefied 
natural gas (LNG). 

The PMLF project will implement partial magnetic levitation first before 
integrating magnetic guidance and magnetic propulsion into the system. As a result, 
the first phase of the PMLF project will require locomotives that can generate 
considerable traction forces. These locomotives may also take advantage of partial 
magnetic levitation on tangents and on descending grades. Reducing concentrated 
contact forces between the steel wheels and rails means that there will be less 
impact and wear on the tracks, allowing longer maintenance intervals which will 
result in less disruption of rail routes and much lower maintenance costs. Electricity 
for the superconducting magnets mounted to PMLF cars will be supplied by fuel 
cells and from any excess electricity generated by the locomotives. Solar panels on 
top of PMLF rail cars may also be used to supplement the electricity supplied by 
the fuel cells. LNG has a greater energy density than rocket fuels such as kerosene 
and may be used to power both the fuel cells and the internal combustion engines 
(ICEs) on the locomotives if ICEs continue to be used on locomotives. Later 
phases of the project will transition completely to fuel cells (80 % + efficiency) 
and other energy sources. Emergency braking will be facilitated by diminishing 
the magnetic repulsive forces in order to increase friction between the wheels 
and rail. It may also be possible to have some magnets generate attractive forces 
to increase wheel to rail contact forces and enhance braking. Stopping distances 
will be much shorter than for traditional freight trains once magnetic propulsion is 
introduced into the system and wheel contact with rail will no longer be required 
for stopping. Finally, PMLF can transition to being fully magnetically levitated 
once both magnetic propulsion and magnetic guidance are fully implemented in 
later phases of this project, greatly increasing the maximum speed that the train can 
travel at in rural and unpopulated areas. As noted before, wheels will continue to 
be required unless the mechanisms for rail crossings, turnouts and crossovers are 
completely redesigned to include MagLev hardware to run continuously through 
these locations. 

SAFETY SYSTEMS

Positive Train Control – Railroad safety has improved dramatically over 
the past few decades thanks to enforcement and development of safety regulations 
as well as due to the implementation of advanced safety technologies. In the United 
States, railway accident rates have reduced by over 80 percent within the last 
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four decades. Many of the more recent accidents have been caused by human 
error. Positive Train Control is designed to prevent train accidents attributable to 
human error and to improve the operational safety of both freight and passenger 
railroads. PTC has the ability to slow or stop the train automatically and to 
safeguard against train-to-train collisions, derailments, unauthorized travel in work 
zones and movements of trains through faulty railroad switches [3]. The complete 
implementation of PTC in the United States would include about 113,000 route 
km (70 000 route miles) of the nearly 234,000 route km (145,000 route miles) that 
exist in the country. It is important to note that the United States has about 25 % 
of the world’s rail routes which is the main reason why implementation of PTC 
has been slow and expensive in the United States. The original implementation 
deadline was December 31, 2015. The revised deadline is December 31, 2018 but 
the Federal Railroad Administration may approve an individual railroad’s extension 
to an alternative deadline of December 31, 2020. What this means is that any 
proposed MagLev freight trains designed to share railways with other trains must 
be fully integrated within the PTC systems and networks if MagLev freight is not to 
have any restrictions on the type of cargo it carries or if it wants to use the primary 
rail routes. The basic system architecture for PTC is shown in Fig. 2.

Fig. 2. Positive Train Control System Architecture [4]
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Partially levitated MagLev freight is readily adaptable to the various types of 
PTC that have been developed for traditional trains. Although magnetically assisted 
freight trains are envisioned to operate at much higher speeds than other freight 
trains, the PTC system is already set up for high-speed operations including high-
speed rail. Operating speeds for PMLF will not exceed maximum HSR speeds. 
The fact that PMLF physically uses the steel tracks, switches and signals means 
that it will be able to take full advantage of the safety mechanisms provided by 
PTC. Thus, from the onset, PMLF will be able to achieve at a minimum the level 
of safety offered by traditional train operations. It must be emphasized that because 
PMLF also uses magnetic systems in addition to existing rail hardware, its safety 
capabilities will exceed those of its conventional counterparts. A simple example 
of this is a misaligned or broken rail that could be catastrophic for a traditional 
train but not so for PMLF that relies to a great extent on repelling magnetic for 
stability. 

Scout Rail Vehicle – As reliable as PTC may become, there will always be 
some risk of error or malfunction. One of the greatest safety concerns for railroads 
in the United States are railroad grade crossings. This is especially true for higher 
speed operations. PTC is intended to eliminate human error in controlling the 
movement of trains but PTC has little control over human error when it comes to 
cars, trucks and other roadway vehicles that use railroad grade crossings. Although 
PTC does interface with signals and gates that are used to control vehicle entry 
at railroad crossings, these measures may not always prevent roadway vehicles 
from attempting to cross or being stopped directly over a crossing when a train 
is approaching. There are over 200,000 railroad grade crossings in the United 
States. 

Suppose a small un-manned rail vehicle travels a short distance ahead of the 
PMLF train to scout the tracks ahead and forewarn the train of any approaching 
hazards. Not only could it detect damage or obstacles on the tracks and signal this 
information to the PTC system (this could be very useful for traditional trains in 
seismic zones such as California) but it could also be used as an additional safety 
measure at railroad grade crossings. This scout rail vehicle could physically stop 
at a rail crossing as the PMLF train approaches, assuring that nothing else gets on 
the tracks. Its light weight and small size will allow it to accelerate rapidly ahead 
of the PMLF train once the train is nearly at the grade crossing. Its performance 
could also be enhanced through partial magnetic levitation, magnetic guidance and 
magnetic propulsion. 

Magnetic Forces – Magnetic technology can be used to enhance traction, 
reduce stopping distance and to supplement guidance. As a result, PMLF has the 
inherent safety attributes of a freight train guided by steel rails complemented by 
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the additional performance benefits that can be obtained using magnetic fields. 
In addition, PMLF will exert much smaller concentrated forces on the tracks and 
other supporting elements, reducing fatigue and prolonging the service life of rail 
infrastructure.

EXISTING RAILWAY INFRASTRUCTURE

Unlike previously proposed MagLev concepts that were intended to partially 
share railway routes with traditional trains, the PMLF train concept is envisioned 
to be completely compatible with existing railway infrastructure and requires no 
additional routes or track. Furthermore, changes to the existing track components 
necessary to accommodate the PLMF will be initially limited to modifications 
or additions and will not require complete replacement. Any such alterations or 
additions will not affect the operation of traditional trains that PLMF trains will 
share the rail routes with. It is important to identify and consider the function of 
each prime component used in a railway track in order to determine how it will 
affect or be affected by the addition of PMLF.

Track Components [5].
The majority of railway infrastructure consists of track. PMLF can become 

a reality because the track itself is relatively simple to modify for use by PMLF 
trains. There is ample space to the outside of the rails to install panels housing metal 
loops and the loads from PMLF trains will be lighter and more evenly distributed 
to the ties, ballast and underlying layers. 

Rail: The most expensive material in the track is the steel rail. The rail’s 
primary function is to transfer the train’s weight to the cross ties and to guide the 
train’s wheel flanges. It also provides a smooth riding surface. Rail may vary in 
shape and weight. Heavy rail uses a 0.1525 m (6 inch) wide base and the preferred 
section weighs 70 kg/m (141 pounds per yard) of length. Light rail uses a 0.14 m 
(5 ½ inch) wide base and typically weighs 50 kg/m (100 pounds per yard).

Ties: Ties are typically made of timber, concrete, steel or alternative materials. 
Ties cushion the load of the train and distribute it from the steel rail to the ballast. 
Ties also maintain the gage (spacing) of the rail. Ties made from concrete require 
impact absorbing pads between the rail and the tie in order to achieve the desired 
level of cushioning. Wood ties provide impact absorption through the depth of 
the tie itself. Steel ties are very expensive and are used in areas not favorable to 
the use of timber or concrete ties including track sections with extreme curvature 
where the gage is prone to widening. Alternative material ties are typically made 
from recycled materials and are currently being tested for light rail applications. 
The two main types of ties are Track Ties and Switch Ties. Track Ties are typically 
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2.6 m (8 feet 6 inches) long but may be 2.75 m (9 feet) long on curved sections. 
Switch Ties vary in length from 2.75 m to 7 m (9 feet to 23 feet.) Heavy rail timber 
ties are 0.178 m by 0.229 m (7 inches by 9 inches) nominal in section. Typical 
tie spacing is 0.495 m (19 ½ inches) for heavy rail and 0.54 m (21 ¼ inches) for 
medium tonnage. 

Ballast Section: The ballast section anchors the ties and stabilizes the track 
in lateral, longitudinal and vertical directions. It also serves to rapidly and properly 
drain any water from the track, to facilitate track maintenance and to distribute 
the load from the ties to the underlying subgrade. The preferred materials used for 
ballast are granite, hard limestone, open hearth and blast furnace slags. Important 
characteristics of the ballast particles include size and shape, degree of sharpness, 
angularity and roughness. Typical depth of the ballast section is 0.46 m to 0.61 m 
(18 to 24 inches) and extends 0.254 m to 0.305 m (10 to 12 inches) past tie ends.

Rail Joints: Rail joints are used at rail discontinuity points to hold in place 
and align two ends of rail. They consist of two joint bars that prevent lateral and 
vertical movement of the rail ends while allowing longitudinal movement of the 
rails due to thermal expansion or contraction. Standard rail joint bars connect 
two identical sections of rail. Compromise rail joint bars connect two rails that 
have different sections (weights). Insulated rail joints are used when track circuits 
are present in order to prevent the track circuit’s electrical current from flowing 
between the ends of the joined rail.

Tie Plates: Tie plates provide a uniform bearing surface between the rail and 
the tie so that the rail does not damage the tie.

Rail Anchors: Rail anchors attach to the base of the rail and control 
longitudinal and transverse movement of the rail due to thermal effects, braking, 
grades and train traffic patterns.

Fasteners: Fasteners can be spikes, bolts and screws that are used to connect 
rail or track components together including fastening rails to ties. 

Derails: Derails prevent unauthorized or unsecured rolling stock from 
entering specific tracks by guiding its wheels off the track.

Wheel Stops and Bumping Posts: Wheel stops prevent rail cars from rolling off 
the ends of tracks or into structures. Bumping posts are rail car stops that consist of 
braced blocks that are at the elevation of rail car couplers. These are heavy duty stops that 
are placed on track to prevent rail cars and other equipment from running off the track.

Gage Rods: Gage rods supplement ties in maintaining the gage of the track. 
They are also used to temporarily retrofit a defective tie until it can be replaced. 
Gage rods are either insulated where track circuits are used or non-insulated.

Sliding Joints: Also called Conley joints, these are used instead of rail 
anchors to allow longitudinal expansion and contraction of the rail on open decked 
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bridges. Sliding joints have beveled rail ends that move but still provide continuity 
and support.

Mitre Rail: Mitre rails allow track to be opened and closed at frequent 
intervals. These are most often used on draw bridges and swing span bridges.

Guard Rails: These are derailment rails typically used on bridges, in tunnels 
and for overpasses. These prevent derailed equipment from falling off a bridge or 
an overpass or from impacting the sides of a tunnel or structure. Inner guard rails 
are placed between the running rails and typically use a T-rail section. Outside 
guard rails may use timber members. 

Turnouts.
Turnouts allow trains to pass from one track to another track. They consist 

of a switch, a frog, rails connecting the switch and the frog, guard rails, and a 
switch stand for operating the switch. The three basic types of turnouts are Lateral, 
Equilateral and Lap. Lateral right hand turnouts have the diverging track running 
to the right. Lateral left hand turnouts have the diverging track running to the left. 
Equilateral turnouts have both tracks diverging and are often used in regions of 
higher operating speeds since the curvatures of the Equilateral turnouts are half 
of those required for Lateral turnouts. Lap turnouts are typically used in rail yards 
where maximum track lengths are required and contain two sets of switch points 
and three different frogs.

Designing turnouts to accommodate metal loops used by PMLF will 
require significant research and testing due to all the existing components that are 
present at these locations. Again, PMLF trains will initially cross these locations 
without relying on magnetic forces. Turnouts have a limited service life and a 
good opportunity to upgrade these to provide full PMLF functionality is during 
replacement. 

Switch: A switch deflects the wheels of a train from the track upon which the 
train is running. The most common switch is the split switch in which two point 
rails are connected by switch rods and are supported on metal plates fastened to 
ties. The switch (point) rails taper to 64 mm (1/4 inch) or 32 mm (1/8 inch) point 
at the end which is appropriately called the point of the switch. The other ends 
of the switch rails are called the heel where the switch rails connect to the lead 
rails using joint bars about which the switch pivots. The switch stand controls 
the movement of the switch rails which is about 0.127 m (5 inches.) Switch 
rails are typically from 3.4 m to 11.9 m (11 feet to 39 feet) in length, but can be 
longer for high turnout numbers. Switches may be hand operated, power operated  
or both.

Turnout Rails: Turnouts are made from several special rails. Stock rails are 
the outside rails in a switch that the point rails bear against. Closure rails connect 
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the heel of the switch points and the toe of the frog. Knuckle rails are the rails that 
the movable point in a frog bears against.

Frog: A frog is used at an intersection of two running rails and it allows 
the flange of a wheel moving on one rail to cross onto the other rail. Frogs are 
classified as either rigid, spring rail or movable point frogs. Spring frogs provide 
continuous support for the wheel as it rolls over the frog flangeway. These frogs 
have a movable wing rail that is held closed by springs and a guardrail that pulls 
the wheel over, forcing the wing rail to open on the diverging side. Rigid frogs may 
use one piece castings as inserts or may be bolted together using machined rails. 
Movable point frogs are used where the angle between the two sets of crossing 
tracks is very acute and would result in an excessively long throat if conventional 
crossing diamond frogs were used. Movable point frogs use two movable center 
point rails to maintain the flangeway.

Switch Ties: Special standardized switch tie layouts are used for turnouts. 
Two head block ties are used under the switch mechanism. Heel block ties are used 
under the heel block assembly. Frog ties are used to support the frog.

Stock Rails: Stock rails have the same section shape as the switch point rails. 
The stock rail on the diverging side of the switch point is bent to assure a proper 
fit so that there is no wheel impact on the point.

Switch Points: Switch points are moveable rails that allow a change of route 
direction to occur within the turnout. Switch points typically consist of a tip, heel, 
planed (machined) portion, reinforcing bar, switch clips and stop blocks. Switch points 
are comprised of machined rails that are snug fit against the stock rail. The change of 
direction is achieved when the point is moved away from the stock rail. Stop blocks 
are used for lateral support due to the wheel pushing outward on the planed rail.

Turnout Plates: Different types of turnouts use a specific set of supporting 
and bracing plates, including gage, switch, heel, hook and frog turnout plates. 

Guard Rails: Turnout guard rails are used to prevent misrouting or derailing 
at the frog. They also prevent the wheels from striking the frog point. 

Switch Stands: Switch stands are used for operating the switch. High stand 
switch stands are used on main line applications and ground throw stands are 
used in yards or at industrial locations. Main line switch stands have a target that 
is colored green when the switch line is set for the normal route and red if the 
switches are reversed. A power switch is operated by an electric machine that lines 
the switch and can be operated remotely or manually. A spring switch is a hand 
thrown switch that uses a spring mechanism instead of a rigid connecting rod. 

Railway Crossings and Crossovers. 
A railway crossing is used at an intersection of two tracks. A crossing requires 

four frogs and connecting rails. Crossings may be straight, single curve or double 
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curve. When crossing angles are greater than 25 degrees, rails and manganese 
castings are cut to fit against each other and are secured using filling blocks and 
well-bolted straps. For crossing angles smaller than 25 degrees, regular frog point 
devices are used and these crossings are designated as frog crossings. The end 
frogs of a frog crossing are similar to a rigid frog. The middle frogs have two 
running points and are often described as double pointed frogs. Crossovers are 
simply two turnouts except that the track between the frogs follows the frog angle. 
Crossovers pose the same challenges as turnouts in terms of installing PMLF  
components. 

Road Crossings.
Road crossings occur where roads, streets or highways intersect the track 

at grade and are thus often called grade crossings. These locations have increased 
maintenance requirements and present a very important safety concern. Different 
types of materials are used for road crossings including timber, asphalt, concrete 
and pre-manufactured rubber. Some crossings may be unsurfaced. The type of 
material used at a crossing is dependent on the amount of vehicular traffic that uses 
the crossing. Road crossings will be easy to modify to include embedded metal 
loop panels for PMLF use.

Crossing Warning Devices: Warning signs, signals and pavement markings 
are important means of warning motor vehicles approaching the crossing. Automatic 
warning flashers and gates are used at road crossings with higher vehicular volume 
or where higher speed trains use the track. It is important to note that a large 
number of road crossings in the United States do not use gates.

Utility Crossings.
Various utilities such as pipes, cables, conduits and wires cross the railways 

at many locations. Utilities often also run along the track right of way. Utilities may 
be overhead or underground. There are numerous general and safety standards for 
utility crossings. These are not expected to be impacted by converting the track to 
PMLF use. 

Maintenance and Restoration Activities. 
Railways must be maintained and rehabilitated at regular cycles with 

minimal disturbance to the track. Maintenance and rehabilitation programs include 
spot replacement of ties, correction of gage deficiencies, smoothing, elimination of 
joints, adjustment of continuous welded rail (CWR), turnout maintenance, repair 
of battered rail ends, and grinding of rail. 

Major restoration and track renewal activities are performed using specialized 
production gangs. These activities include rail replacement, tie replacement, 
undercutting/ballast replacement, surfacing, road crossing renewal and turnout 
renewal. 
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Each activity will need to be evaluated in terms of how it affects the addition 
of PMLF service and how it needs to be modified in the future to better optimize 
PMLF utilization. A good example is tamping which is an activity that vibrates 
the ballast surrounding the ties. Initially, the concrete panels with embedded metal 
loops used by PMLF to generate repelling forces will need to be removed from 
the rail ties so that the ballast tamper can perform its function. However, it will 
not be difficult to modify the tamping machine to tamp the ballast without having 
to remove these panels. 

Affects on Passenger and Commuter Trains.
It should be noted that one specific area of concern regarding MagLev 

vehicles is the stray magnetic fields produced by the magnets and electrical 
components and how these could affect passengers [6]. This will not need to be 
considered for PMLF since all the superconducting magnets will be mounted to 
a freight train that will not carry passengers. The metal loops embedded in the 
concrete panels that will be attached to the track will not have any magnetic effects 
on passengers in trains that will pass over these regardless if the track is electrified 
either by overhead catenary or third rail systems. 

FUTURE RESEARCH DEVELOPMENT

There are three principal areas of research and development that are critical 
to the effective future implementation of PMLF on existing rail corridors: 

• Superconducting MagLev Technology;
• PMLF Impacts on Railway Operations;
• Integration with Communication and Safety Systems.
First, superconducting magnetic levitation technology utilizing dipole and 

quadrupole magnets must be evaluated in detail and adapted to the design of a 
new fleet of freight rail cars and locomotives. This also includes research on the 
modification of existing rail infrastructure to accommodate PMLF, such as the 
installation of inductive loops and other components. Later phases of the project 
will require comprehensive R&D of magnetic propulsion and guidance. 

Second, the effects of PMLF on all existing railroad activities must be 
considered in detail to assure that there is no disruption of service, maintenance, 
repair and other operations. This research will also allow future improvements 
and modifications to be made to the railroad infrastructure and to the equipment 
used. This will benefit both traditional freight and PMLF operation. The successful 
development of high speed PMLF will also provide more funding to maintain the 
rail infrastructure due to additional revenue from cargo shipments that require 
rapid transport. 
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Third, PMLF must be fully integrated with all railway communication, 
signaling and safety systems. This complete integration must be in place when 
PMLF trains are first entered into service. Much research, development and 
testing needs to be performed to meet this requirement, including incorporation of 
PMLF into the Positive Train Control network. However, the general approach for 
integrating PMLF with these systems will be based on the approach that is being 
used for traditional trains, making the process more efficient. 

 Finally, many MagLev researchers and contributors do not feel that it is 
feasible for any form of MagLev to share existing railway infrastructure and that 
MagLev systems must be designed as completely independent transportation 
systems [7]. However, the United States has such an extensive rail network that 
the possibility of sharing it with MagLev should be considered. In fact, other 
researchers have already considered this as being feasible but with a different 
approach than PMLF. The MAGLEV 2000 system proposed vehicles that could 
function on planar surfaces and modified railroad tracks by using quadrupole 
superconducting magnets. 

CONCLUSION 

The United States has the largest rail network in the world. The successful 
application of Partially Magnetically-Levitated Freight (PMLF) technology in the 
United States would allow MagLev technology to be tested and used on nearly a 
quarter of the world’s rail routes that exist in the United States without having to 
build a single kilometer of a test track. It is essential that any MagLev freight system 
that is designed to utilize existing rail routes be fully compatible with the existing 
railway infrastructure. PMLF makes this possible by combining superconducting 
MagLev technology with traditional wheels-on-steel-rail locomotion. PMLF 
will be able to take advantage of near full magnetic levitation and high speed on 
long stretches of rail routes while being able to rely on mechanical means used 
by traditional trains to navigate congested urban and industrialized areas with 
numerous turnouts and rail crossings. This backward-compatibility will assure that 
PMLF can be integrated into the Positive Train Control network and other safety 
systems used and required by railroads. 

PMLF will allow goods to be transported by rail more efficiently than ever 
before and it will also allow freight operation on rail routes to achieve speeds many 
times higher than were ever achieved before in the USA. Similar systems could be 
adopted in other countries. Continued research and development of PMLF, including 
magnetic propulsion and guidance, will eventually allow fully magnetic operation 
of freight trains on rail routes that have been updated with MagLev equipment. 
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