Раздел 1. НАУЧНЫЕ И ПРАКТИЧЕСКИЕ РАЗРАБОТКИ

УДК 629.439

В. А. Поляков, Н. М. Хачапуридзе

Институт транспортных систем и технологий Национальной академии наук Украины (Днепр, Украина)

МОДЕЛЬ ЛЕВИТАЦИОННОЙ СИЛЫ МАГНИТОЛЕВИТИРУЮЩЕГО ПОЕЗДА

Дата поступления 22.07.2017 Решение о публикации 26.10.2017

Аннотация:

Цель. Реализация левитационной сил (ЛС) магнитолевитирующего поезда (МЛП) происходит в процессе взаимодействия магнитных полей токов сверхпроводящих поездных (СПК) и короткозамкнутых путевых контуров (КПК), являющихся элементами левитационного узла (ЛУ). Исходя из этого, целью настоящего исследования является получение корректного описания такого взаимодействия. На современном этапе, основным и наиболее универсальным инструментом анализа и синтеза процессов и систем является их математическое и, в частности, компьютерное моделирование.

Методика. В то же время, радикальные преимущества этого инструмента делают ещё более важной прецизионность выбора конкретной методики проведения исследования. Особую актуальность это имеет по отношению к столь большим и сложным системам, какими являются МЛП. По этой причине, в работе особое внимание уделено аргументированному обоснованию выбора селективных особенностей исследовательской парадигмы.

Результаты. Результаты анализа существующих версий модели процесса реализации ЛС свидетельствуют о том, что каждая из них, наряду с преимуществами, обладает и существенными недостатками. В связи с этим, одним из основных результатов исследования должно явиться построение математической модели указанного процесса, сохраняющей преимущества упомянутых версий, но свободной от их недостатков. В работе аргументировано обоснована рациональность применения, для целей исследования ЛС поезда, интегративной холистической парадигмы, ассимилирующей преимущества теорий электрических цепей и магнитного поля.

Научна новизна. Приоритетность создания такой парадигмы, а также соответствующей версии модели реализации ЛС составляют научную новизну исследования.

Практическая значимость. Основным проявлением практической значимости работы является возможность, в случае использования её результатов, существенного повышения эффективности динамических исследований МЛП при одновременном снижении их ресурсоёмкости.

Ключевые слова: магнитолевитирующий поезд; математическая модель левитации; интегративная исследовательская парадигма.

Введение

ЛУ поля контуров МЛП – компоненты электромагнитного субпроцесса гиперпроцесса электромеханического преобразования энергии. Моделирование этих компонентов вполне в рамках парадигм теорий электрических цепей и возможно [1] электромагнитного поля. Поэтому существующие версии математической модели ЛС МЛП построены [1-3] исходя из упомянутых парадигм. Анализ свойств упомянутых версий модели свидетельствует о том, что каждая из них обладает как преимуществами, так и недостатками. Их общая положительная черта – достаточная функциональность. Основной же имманентный недостаток версий нестационарность таких дифференциальных уравнений, вызванная циклической переменностью их собственным коэффициентов, соответствующих индуктивностям КПК ЛУ как между собой, так и со СПК, в зависимости от существенно затрудняет поезда. Это решение положения описываемой динамики [4], радикально снижая практическую ценность версий модели.

Задача исследования

Изложенное выявляет [5-7] актуальность создания математической модели ЛС МЛП, ассимилирующей достоинства имеющихся версий такой модели, но свободной от их недостатков. Синтез такой модели является основной задачей настоящей работы.

Методика исследования

Электромеханическое энергопреобразование ЛУ МЛП осуществляется в процессе взаимодействия полей токов СПК и КПК. Поэтому паттерном ЛС поезда является взаимодействие тока элемента СПК с полем токов КПК. Такое взаимодействие может быть описано выражением закона Ампера [8]:

$$f_{\beta\gamma} = l_{\beta\gamma} \cdot i^{\beta\gamma} \cdot B_{\beta\gamma} \cdot Sin\alpha_{\beta\lambda}, \qquad (1)$$

где $f_{\beta\gamma}$ – сила, действующая на γ -тый элемент β -го СПК;

 $l_{\beta\gamma}$, $i^{\beta\lambda}$, $B_{\beta\gamma}$, $lpha_{\beta\gamma}$ — длина элемента, ток в нём, индукция поля, в котором элемент находится, а также угол между $\overline{i^{\beta\gamma}}$ и $\overline{B_{\beta\gamma}}$.

Расчётные схемы СПК и секций КПК приняты, соответственно, в виде наборов гальванически не связанных проводящих прямоугольных рамок, а также пар идентичных прямоугольных катушек, соединённых согласно нульпоточной схеме [1]. Тогда ЛС поезда определима как векторная сумма величин

 $\overline{f_{\lambda\chi}} \ \forall \, \lambda \in [\overline{1,N}], \, \chi \in [\overline{1,4}],$ каждая из которых, — это результат взаимодействия тока одного из элементов СПК с полем токов взаимодействующих с ним КПК. В последнем упомянутых СПК. выражении, N – число Динамика определяется компонента такого взаимодействия электромагнитного уравнениями второго закона Кирхгофа [8]. Подсистема "СПК – КПК", как правило, вырождена [6] – ёмкостные показатели её элементов пренебрежимо низки. Потому, в инерциальной системе отсчёта $Q\varepsilon^{\rho}$ \forall $\rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}]$, модель электромагнитного компонента взаимодействия β -го СПК с учитываемыми (в этом взаимодействии) КПК имеет вид [8, 9]:

$$\sigma_{\rho\beta} = L_{\rho\rho} \cdot \frac{d}{dt} i^{\rho} + L_{\rho\mu} \cdot \frac{d}{dt} i^{\mu} + r_{\rho} \cdot i^{\rho} \ \forall \ \rho, \mu \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}]; \tag{2}$$

$$\sigma_{\rho\beta} = \sigma_{\rho\beta}^{u} - \sigma_{\rho\beta}^{l}; \quad \sigma_{\rho\beta}^{\kappa} = -\frac{d}{dt} \Big(M_{\rho\beta}^{\kappa} \cdot i_{s}^{\beta} \Big)$$

$$\forall \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \kappa = u \vee \kappa = l, \qquad (3)$$

где $\sigma_{\rho\beta}^{\kappa} \, \forall \, \rho \in [\overline{(\chi_{\beta} - \mathrm{E}), (\chi_{\beta} + \mathrm{E})}], \kappa = u \vee \kappa = l -$ электродвижущие силы (э. д. с.) в катушках ρ -го КПК при изменениях сцеплений с их подконтурами потока тока i_s^{β} цепи β -го СПК;

 $L_{\rho\rho},\,L_{\rho\mu},\,r_{\rho}\,\,orall\,\,
ho,\mu\,\in\,[\overline{(\chi_{\beta}-{\rm E}),(\chi_{\beta}+{\rm E})}]\,\,-\,\,$ собственные и взаимные индуктивности, а также активные сопротивления КПК;

 χ_{β} — номер (от начала участка трассы, вдоль которого происходит движение МЛП) последнего КПК, поперечную осевую линию которого миновала поперечная осевая линия β -го СПК;

Е – половина числа КПК, с которыми учитывается электромагнитное взаимодействие каждого СПК;

$$i^{\rho}, i^{\mu} \, \forall \, \rho, \mu \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}]$$
 – токи КПК;

 $M_{\rho\beta}^{\kappa}$ \forall $\rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \ \kappa = u \lor \kappa = l -$ взаимные индуктивности между β -ым СПК и катушками взаимодействующих с ним КПК;

t — текущее время.

Благодаря принятым конструкционным мерам [1], значения токов i_s^{λ} $\forall \lambda \in [\overline{1,K}]$, изменяются достаточно медленно и, на интервалах, соизмеримых со временем наблюдения движения поезда, могут считаться равными между собой и постоянными

$$i_s^{\lambda} = i_s = const \ \forall \lambda \in [\overline{1, K}],$$
 (4)

где K — число СПК, установленных на МЛП. Значение же E нужно выбирать так, чтобы по обеим сторонам от каждого β -го СПК в КПК, предшествующих, а также следующих за учитываемыми, величины $\sigma_{\rho\beta}^{\kappa}$ \forall ρ <

 $\chi_{\beta} - E \lor \rho > \chi_{\beta} + E, \ \kappa = u \lor, \kappa = l$ даже в неравновесном состоянии ЛУ, были бы пренебрежимо малы.

Поэтому $L_{\rho\rho}, L_{\rho\mu}, M_{\rho\lambda}^{\kappa}$ СПК КПК взаимоподвижны. И $\forall \rho, \mu \in [\overline{(\chi_{\lambda} - E), (\chi_{\lambda} + E)}], \lambda \in [\overline{1, K}], \kappa = u \vee \kappa = l$ имеют циклически изменяющиеся во времени значения. Это, в свою очередь, приводит к нестационарности коэффициентов уравнений (2), (3) и, как отмечено, существенно снижает практическую ценность версии модели. С целью устранения указанного недостатка, реализацию слагающих ЛС МЛП следует рассматривать относительно координатных систем, в каждой из которых рассматриваемый СПК и учитываемые во взаимодействии с ним КПК условно взаимно неподвижны. В таком качестве, удобнее всего принять [5] отсчётные системы $C_{\lambda}\eta^{\mu} \, \forall \, \lambda \in [\overline{1,K}], \mu \in [\overline{1,3}],$ каждая из которых жёстко связана с λ -ым СПК. Инерциальными $C_{\lambda}\eta^{\mu} \ \forall \lambda \in [\overline{1,K}], \mu \in [\overline{1,3}],$ в общем случае, не являются. В то же время, весьма желательно [10], чтобы уравнения, описывающие динамику электромагнитного компонента взаимодействия СПК с КПК, имели тензорный характер. Такие уравнения могут быть получены [11], из равенств типа (2), путём замены в них локальных производных $\frac{d}{dt}$ абсолютными $\frac{D}{dt}$, а также перехода в модели (2), (3) к координатам $\eta_{\lambda}^{\mu} \, \forall \lambda \in [\overline{1,K}], \mu \in [\overline{1,3}].$ Соотношение между упомянутыми производными, как известно, имеет вид [11]:

$$\frac{D}{dt}\eta_{\alpha}^{\mu} = \frac{d}{dt}\eta_{\alpha}^{\mu} + e_{\mu\alpha\nu} \cdot \omega_{\alpha} \cdot \eta_{\alpha}^{\nu} \,\forall \, \mu, \nu \in [\overline{1,3}], \tag{5}$$

где $e_{\mu\alpha\nu} \forall \mu, \nu \in [\overline{1,3}], \ \omega_{\alpha}$ — символ Леви-Чивита, а также вектор угловой скорости вращения $C_{\alpha}\eta^{\mu} \ \forall \ \mu \in [\overline{1,3}]$.

После указанной замены, соотношения, полученные из (2), приобретают тензорный характер. Поэтому, в частности, их форма становится инвариантной по отношению к координатам, в которых они записаны. Переход же к координатам $\eta^{\mu}_{\alpha} \, \forall \, \mu \in [\overline{1,3}]$ осуществим согласно выражениям:

$$\eta_{\alpha}^{\mu} = \vartheta_{\rho}^{\mu} \cdot \varepsilon^{\rho} \ \forall \ \rho \in [\overline{(\chi_{\alpha} - E), (\chi_{\alpha} + E)}]; \mu \in [\overline{1,3}]$$
 (6)

где $\mathcal{G}^{\mu}_{
ho}$ – матрица преобразования координат:

$$\mathcal{G}^{\mu}_{\rho} = \frac{\partial \eta^{\mu}_{\alpha}}{\partial \varepsilon^{\rho}} \,\forall \rho \in [\overline{(\chi_{\alpha} - E), (\chi_{\alpha} + E)}]; \mu \in [\overline{1,3}]. \tag{7}$$

На оси η_{α}^{μ} \forall μ \in $[\overline{1,3}]$ и ε^{ρ} \forall ρ \in $[\overline{(\chi_{\alpha}-E),(\chi_{\alpha}+E)}]$ могут проецироваться любые векторные величины, характеризующие электродинамику взаимодействия СПК и КПК в системах отсчёта соответственно $C_{\alpha}\eta^{\mu}$

 $\forall \mu \in [\overline{1,3}]$ и $Q\varepsilon^{\rho} \forall \rho \in [\overline{(\chi_{\alpha} - E), (\chi_{\alpha} + E)}]$. В частности, ими могут быть векторы токов, э. д. с. и индукции полей.

Выражения для связей вида

$$\eta_{\alpha}^{\mu} = \eta_{\alpha}^{\mu}(\varepsilon^{\rho}) \,\forall \, \rho \in [\overline{(\chi_{\alpha} - E), (\chi_{\alpha} + E)}]; \mu \in [\overline{1,3}]$$
 (8)

могут быть получены исходя из того, что [5], в процессе описываемого координатного преобразования, его инвариантами являются амплитуды токов в рассматриваемых контурах, а также их э. д. с.

С помощью же матрицы

$$\mathcal{G}^{\rho}_{\mu} = \frac{\partial \varepsilon^{\rho}}{\partial \eta^{\mu}_{\alpha}} = (\mathcal{G}^{\mu}_{\rho})^{T} \,\forall \rho \in [\overline{(\chi_{\alpha} - E), (\chi_{\alpha} + E)}]; \mu \in [\overline{1,3}], \tag{9}$$

осуществимо обратное преобразование

$$\varepsilon^{\rho} = \mathcal{Y}^{\rho}_{\mu} \cdot \eta^{\mu}_{\alpha} \forall \rho \in [\overline{(\chi_{\alpha} - E), (\chi_{\alpha} + E)}]; \mu \in [\overline{1,3}].$$
 (10)

В выражениях (3) для $\sigma_{\rho\beta}^{\kappa} \, \forall \, \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \, \kappa = u \vee \kappa = l, \, M_{\rho\beta}^{\kappa}$ $\forall \, \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \, \kappa = u \vee \kappa = l$ существенно зависят, в частности, от взаимного расположения рассматриваемого β -го СПК и КПК, взаимодействие с которыми для него рассматривается. Поэтому

$$M_{\rho\beta}^{\kappa} = M_{\rho\beta}^{\kappa}(w_{\beta}) \ \forall \ \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \ \kappa = u \vee \kappa = l, \tag{11}$$

где w_{β} — координата, определяющая текущее положение рассматриваемого β -го СПК относительно начала отсчёта движения МЛП вдоль оси пути. При этом, поскольку КПК вдоль трассы движения поезда располагаются регулярно, последние зависимости имеют гармонический характер. В то же время, современные способы измерения позволяют [12] экспериментально-расчётными методами со вполне приемлемой точностью определять значения взаимных индуктивностей контуров магнитосвязанных электрических цепей при различном текущем их пространственном взаиморасположении. Это, в свою очередь, позволяет, используя упомянутые методы, поточечно строить искомые зависимости (11) на требуемой сетке w_{β}

. Далее, с использованием методов, например, полиноминальной регрессии [13], реализация которых доступна в ряде современных систем компьютерной математики (например, Mathematica), зависимостям вида (11) может, с сохранением достаточно высокой точности содержания, быть придана форма аналитических выражений. Помимо того, с учётом равенств (4), выражения (3) могут быть преобразованы к виду

$$\sigma_{\rho\beta} = \sigma_{\rho\beta}^{u} - \sigma_{\rho\beta}^{l}; \quad \sigma_{\rho\beta}^{\kappa} = -i_{s} \cdot w_{\beta}^{\bullet} \cdot \frac{d}{dw_{\beta}} M_{\rho\beta}^{\kappa}$$

$$\forall \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \kappa = u \vee \kappa = l, \qquad (12)$$

где w_{β} — скорость продольного (вдоль касательной к оси) движения рассматриваемого β -го СПК относительно пути. Значения $\frac{d}{dw_{\beta}}M_{\rho\beta}^{\kappa}$ \forall $\rho \in [\overline{(\chi_{\beta}-E),(\chi_{\beta}+E)}],$ $\kappa=u\vee\kappa=l$ для подстановки в выражения (12) могут быть получены с использованием, созданных описанным путём в форме аналитических выражений, зависимостей вида (11). Таким образом, каждый из β векторов $\overline{\sigma_{\rho\beta}}$ \forall $\rho \in [\overline{(\chi_{\beta}-E),(\chi_{\beta}+E)}]$ оказывается определёнными в системе отсчёта $Q\varepsilon^{\rho}$ \forall $\rho \in [\overline{(\chi_{\beta}-E),(\chi_{\beta}+E)}]$. Далее, с использованием соотношений вида (6) — (8), каждый такой вектор может быть определён в системе $C_{\beta}\eta^{\mu}$ \forall $\mu \in [\overline{1,3}]$ проекциями $\sigma_{\mu\beta}\forall$ $\mu \in [\overline{1,3}]$.

После преобразований, уравнения, полученные из (2) и (3) путём их трансформации в триэдр $C_{\beta}\eta^{\mu}$ \forall $\mu \in [\overline{1,3}]$ с использованием соотношений (5) и (6), приобретают вид

$$\sigma_{\mu\beta} = L_{\mu\mu} \cdot \left(\frac{d}{dt}i^{\mu} + e_{\mu\beta\nu} \cdot \omega_{\beta} \cdot i^{\nu}\right) + L_{\mu\tau} \cdot \left(\frac{d}{dt}i^{\tau} + e_{\tau\beta\theta} \cdot \omega_{\beta} \cdot i^{\theta}\right) + r_{\mu} \cdot i^{\mu}$$

$$\forall \mu, \nu, \tau, \theta \in [\overline{1,3}]; \qquad (13)$$

$$\sigma_{\mu\beta} = \mathcal{G}^{\mu}_{\rho} \cdot \sigma_{\rho\beta} \ \forall \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}]; \mu \in [\overline{1,3}]$$

$$\sigma_{\rho\beta} = \sigma^{\mu}_{\rho\beta} - \sigma^{\mu}_{\rho\beta}; \quad \sigma^{\kappa}_{\rho\beta} = -i_{s} \cdot w_{\beta} \cdot \frac{d}{dw_{\beta}} M^{\kappa}_{\rho\beta}$$

$$\forall \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \kappa = u \vee \kappa = l. \qquad (14)$$

Уравнения (13) имеют постоянные коэффициенты, являются тензорными и описывают токовую динамику ЛУ МЛП в координатах i^{μ} $\forall \mu \in [\overline{1,3}]$. После их (как правило – численного) разрешения относительно этих переменных, последние, с использованием соотношений (10), преобразуются в координаты $i^{\rho} \forall \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}]$, значения которых определяют реальные токи в цепях КПК.

Магнитная цепь ЛУ предполагается ненасыщенной [1]. Поэтому она может считаться условно-линейной подсистемой и, следовательно, к ней применим принцип аддитивности. Исходя из этого, результирующее поле токов КПК в любой точке геометрического пространства $O\Xi_{\gamma} \ \forall \ \gamma \in [\overline{1,3}]$, в котором реально движется СПК относительно КПК, может описываться как сумма полей, создаваемых в этой точке токами отдельных модулей КПК:

$$B_{\gamma\beta} = B_{\gamma\rho\beta} \cdot e^{\rho}; e^{\rho} = 1; \forall \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \gamma \in [\overline{1,3}], \tag{15}$$

где $B_{\gamma\beta}, B_{\gamma\rho\beta} \ \forall \ \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \gamma \in [\overline{1,3}]$ — пространственные компоненты индукции поля, создаваемого всеми (учитываемыми во

взаимодействии с β -ым СПК) модулями КПК, а также отдельными такими модулями в рассматриваемой точке этого пространства. В свою очередь, значения компонентов $B_{\gamma\alpha\beta}$ \forall γ \in $[\overline{1,3}]$ для каждого α -ого модуля КПК, определимы соотношениями

$$B_{\gamma\alpha\beta}(i^{\alpha}) = B_{\gamma\alpha\beta}^{u}(i^{\alpha}) - B_{\gamma\alpha\beta}^{l}(i^{\alpha}) \ \forall \ \gamma \in [\overline{1,3}], \tag{16}$$

где $B_{\gamma\alpha\beta}^{\kappa}$ \forall $\gamma \in [\overline{1,3}], \kappa = u \vee \kappa = l$ — пространственные компоненты индукции поля токов катушек α -го КПК (взаимодействующего с β -ым СПК).

Выражения же для определения значений $B_{\gamma\rho\beta}^{\kappa}(i^{\rho})$ $\forall \, \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}], \, \gamma \in [\overline{1,3}], \, \kappa = u \vee \kappa = l \,$ имеют вид [14]:

$$\begin{split} B_{1\rho\beta}^{\kappa} &= -\frac{t^{\rho}}{4 \cdot \pi} \cdot \left\{ \left[F_{12} \left(k_{1} , \varphi, \eta \right) + F_{12} \left(k_{3}, \varphi, \eta \right) \right]_{\varphi_{1} = x_{0} + l}^{\varphi_{2} = x_{0} - l - d} - \\ &- \left[F_{12} \left(k_{2} , \psi, \eta \right) + F_{12} \left(k_{4}, \psi, \eta \right) \right]_{\psi_{1} = x_{0} + l}^{\psi_{2} = x_{0} + l + d} \right\}_{\eta_{1} = z_{0} - h}^{\eta_{2} = z_{0} - h} \\ &+ \left[F_{12} \left(k_{1}, \varphi, \eta \right) + F_{12} \left(k_{4}, \varphi, \eta \right) \right]_{\psi_{1} = x_{0} + l}^{\psi_{2} = x_{0} + l + d} \\ &+ \left[F_{12} \left(k_{2}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\psi_{1} = y_{0} + a}^{\psi_{2} = x_{0} + l + d} \\ &+ \left[F_{12} \left(k_{2}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} + h}^{\psi_{2} = y_{0} + a + d} \\ &+ \left[F_{12} \left(k_{2}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} + h}^{\psi_{2} = y_{0} - a + d} \\ &+ \left[F_{12} \left(k_{3}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} + h}^{\psi_{2} = y_{0} - a - d} \\ &+ \left[F_{12} \left(k_{3}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} + h}^{\psi_{2} = y_{0} - a - d} \\ &+ \left[F_{12} \left(k_{2}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} + h}^{\psi_{2} = y_{0} - a - d} \\ &- \left[F_{12} \left(k_{2}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = y_{0} - a - d} \\ &+ \left[F_{13} \left(k_{1}, \varphi, \eta \right) + F_{13} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = y_{0} - l - d} \\ &- \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_{13} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = z_{0} - l - d} \\ &- \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_{13} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = z_{0} - l - d} \\ &- \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_{13} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = z_{0} - l - d} \\ &+ \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_{13} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = z_{0} - l - d} \\ &+ \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_{12} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = z_{0} - l - d} \\ &+ \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_{13} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = z_{0} - l - d} \\ &+ \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_{13} \left(k_{3}, \psi, \eta \right) \right]_{\eta_{1} = z_{0} - l}^{\psi_{2} = z_{0} - l - d} \\ &+ \left[F_{13} \left(k_{2}, \psi, \eta \right) + F_$$

$$f_{31}(k, \varphi, \eta) = -\eta \cdot ar \, sh \frac{k + \varphi}{\sqrt{\varphi^2 + \eta^2}} + \varphi \cdot arc \, tg \frac{(k + \varphi) \cdot \eta}{\varphi \cdot \sqrt{(k + \varphi)^2 + \varphi^2 + \eta^2}};$$

$$f_{32}(k, \varphi, \eta) = \sqrt{2} \cdot \eta \cdot ar \, sh \frac{k + 2 \cdot \varphi}{\sqrt{k^2 + 2 \cdot \eta^2}} - k \cdot arc \, tg \frac{(k + 2 \cdot \varphi) \cdot \eta}{k \cdot \sqrt{(k + \varphi)^2 + \varphi^2 + \eta^2}};$$

$$f_3^0(k, \varphi, \eta) = f_{31}(k, \varphi, \eta) + f_{32}(k, \varphi, \eta);$$

$$k_1^{'} = -k_1 = [(y_0 - a) - (x_0 - l)];$$

$$k_2^{'} = -k_2 = [(y_0 + a) - (x_0 + l)];$$

$$k_3^{'} = k_3 = -[(y_0 + a) + (x_0 - l)];$$

$$k_4^{'} = k_4 = -[(y_0 - a) + (x_0 + l)],$$

$$(17)$$

где $\iota^{\rho} \, \forall \, \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}]$ – плотности токов в обмотках КПК;

 $2 \cdot h$, d — высота и толщина каждой такой обмотки;

 $2 \cdot l, \ 2 \cdot a$ — размеры её же внутреннего пространства;

 x_0, y_0, z_0 — координаты точки пространства, в которой описывается поле.

В выражениях (17), кроме того:

$$\iota^{\rho} = 0.5 \cdot i^{\rho} \cdot q \cdot (h \cdot d)^{(-1)} \forall \rho \in [\overline{(\chi_{\beta} - E), (\chi_{\beta} + E)}],$$
(18)

где q — число витков обмотки КПК.

Далее, в (18) последовательно подставляются значения токов i^{ρ} $\forall \, \rho \in [(\chi_{\beta} - \mathrm{E}), (\chi_{\beta} + \mathrm{E})]$ и, согласно (15) - (17), находятся компоненты $B_{\gamma\beta}$ $\forall \, \gamma \in [\overline{1,3}]$ индукции поля, создаваемого токами КПК, учитываемых во взаимодействии с β -ым СПК.

Пространство системы $O\Xi_{\gamma} \ \forall \ \gamma \in [\overline{1,3}]$ — евклидово. Поэтому мгновенное значение модуля вектора полной индукции поля, компоненты которого были определены, может быть определено выражением

$$B_{\beta} = \sqrt{B_{\gamma\beta}^{(2)} \cdot e^{\gamma}}; e^{\gamma} = 1 \ \forall \gamma \in [\overline{1,3}]. \tag{19}$$

Соотношение же значений упомянутых компонентов $B_{\gamma\beta}$ \forall $\gamma \in [\overline{1,3}]$ определяет собой направление вектора $\overline{B_{\beta}}$.

Поскольку геометрические размеры элементов обмоток СПК определяются их конструкцией, а направления векторов токов таких элементов может считаться совпадающим с их продольными осями, то, таким образом, оказываются известными все величины, входящие в выражения для определения значений ЛС МЛП, чем завершается построение искомой модели этой силы.

Результат исследования

Создана интегративная парадигма моделирования ЛС МЛП, ассимилирующая достоинства теорий цепей и поля, но свободная от их недостатков. Построена математическая модель такой ЛС, не имеющая дефектов предыдущих версий модели. Этим решена задача настоящей части исследования.

Научная новизна и практическая значимость исследования

Научную новизну исследования составляют приоритетность создания интегративной холистической парадигмы моделирования ЛС МЛП, а также соответствующей версии модели реализации ЛС. Основным проявлением практической значимости работы является возможность, в случае использования её результатов, существенного повышения эффективности динамических исследований МЛП при одновременном снижении их ресурсоёмкости.

Вывод

Холистичность и интегративность созданной парадигмы исследования позволили существенно повысить качество математической модели ЛС МЛП, созданной с использованием такой парадигмы. Её использование в процессе динамических исследований МЛП позволит повысить их эффективность и снизить ресурсоёмкость.

Библиографический список

- 1. Дзензерский В. А. Высокоскоростной магнитный транспорт с электродинамической левитацией / В. А. Дзензерский, В. И. Омельяненко, С. В. Васильев, В. И. Матин, С. А. Сергеев К.: Наук. думка, 2001. 479 с.
- 2. Dumitrescu M. Magnetic suspension applications on the railway traction for high speed maglev trains / M. Dumitrescu, V Ştefan, C. Pleşcan, C. I. Bobe, G. M. Dragne, C. N. Badea, G. Dumitru // Bulletin of the Transylvania University of Braşov. − 2015. CIBv Vol. 8 (57) Special Issue № 1. − P. 233–244.
- 3. Wairagade A. K. R. Magnetic Levitation Train / A. K. R. Wairagade, M. B. H. Balapure, P. Ganer // Journal for Research 2015. Vol. 01. Iss. 08. P. 1–5.
- 4. Tandan G. K. A Review on Development and Analysis of Maglev Train / G. K. Tandan, P. K. Sen, G. Sahu, R. Sharma, S. Bohidar // International Journal of Research in Advent Technology. − 2015. − Vol. 3, № 12 − P. 14–17.
- 5. Сипайлов Г. А. Электрические машины (специальный курс) / Г. А. Сипайлов, Е. В. Кононенко, К.А. Хорьков М.: Высш. шк., 1987. 287 с.

- 6. Львович А. Ю. Электромеханические системы Л.: Изд-во ЛГУ, 1989.-296 с.
- 7. Копылов И. П. Математическое моделирование электрических машин М.: Высш. шк., 2001. 327 с.
- 8. Бессонов Л. А. Теоретические основы электротехники: Электрические цепи М.: Высш. шк., 1996. 578 с.
- 9. Арменский Е. В. Единая теория электрических машин / Е. В. Арменский, И. В. Кузина. М.: Изд-во Московск. ин-та электрон. машиностроен., 1975.-256 с.
- 10. Крон Γ . Применение тензорного анализа в электротехнике / Γ . Крон. M., Π .: Госэнергоиздат, 1955. 275 с.
- 11. Рашевский П. К. Риманова геометрия и тензорный анализ / П. К. Рашевский. М.: Наука, 1967. 644 с.
- 12. Панфилов В. А. Электрические измерения / В. А. Панфилов. М.: Издат. дом "Академия", 2006. 288 с.
- 13. Корн Γ . Справочник по математике для научных работников и инженеров / Γ . Корн, Е. Корн. М.: Наука, 1973. 831 с.
- 14. Бирюков В. А. Магнитное поле прямоугольной катушки с током / В. А. Бирюков, В. И. Данилов // Журнал технической физики. 1961. Т. XXXI, № 4. С. 428 435.

Сведения об авторах:

ПОЛЯКОВ Владислав Александрович: кандидат технических наук; старший научный сотрудник; старший научный сотрудник; Институт транспортных систем и технологий Национальной академии наук Украины

E-mail: p_v_a_725@mail.ru

ХАЧАПУРИДЗЕ Николай Михайлович: кандидат технических наук; старший научный сотрудник; заместитель директора по научной работе; Институт транспортных систем и технологий Национальной академии наук Украины

E-mail: itst@westa-inter.com

[©] ПОЛЯКОВ В. А., ХАЧАПУРИДЗЕ Н. М., 2017