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The system of equations comprising the Mohr-Coulomb yield condition and the stress equi-

librium equations may be studied independently of the flow law. This system of equations is hy-
perbolic. Accordingly, to solve the aforementioned system of equations, it is reasonable to apply 
the method of characteristics. In the special case of plasticity theory for materials whose yield cri-
terion does not depend on the average stress, two methods are used to construct an orthogonal net 
of characteristics and to determine the stress field: the R-S method and Mikhlin’s coordinate 
method. In the case of the Mohr-Coulomb yield condition, the angle between the characteristic 
directions depends on the internal friction angle. Therefore, the above-mentioned methods should 
be generalised in accordance with this property of characteristics.  

Purpose. In the case of Plasticity theory for materials whose yield strength does not de-
pend on the average stress, to calculate the stress filed, Mikhlin’s coordinate method is widely 
used. The purpose of this study is to generalise this method for the equation system consisting 
of the Mohr-Coulomb yield criterion and the pressure equilibrium equations. 

Methods. The geometrical properties of the characteristics of the equations’ system 
consisting of the Mohr-Coulomb yield condition and the equilibrium equations are used to 
introduce the generalised Mikhlin coordinates. 

Results. It’s been pointed out that solving equation system consisting of the Mohr-
Coulomb yield condition and equilibrium equation comes to solving equation of telegraphy 
and to subsequent integration. 

Practical Significance. The developed method of system of equations’ solution, con-
sisting of the Mohr-Coulomb yield condition and equilibrium equation enables obtaining high 
precision solutions at insignificant computer time expenditures. 

 
Mohr-Coulomb yield condition, method of characteristics, Mikhlin’s variables, equation 

of telegraphy. 
 

Introduction  
 

The plane strain deformation state of perfect rigid plastic solid and elastic-
perfectly plastic solid the stress equations in the plastic zone consist of the yield 
condition and two equilibrium equations. This system of equations may be stud-
ied without invoking the flow law. In many cases, the above-mentioned system 
of equations is hyperbolic [1]. Determination of the stress field is brought to de-
termination of the characteristics field. In the case of the yield condition equa-
tion which is not dependent upon the average stress, the two methods of con-
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struction of characteristics field are used: the R−S method, suggested in [2], and 
Mikhlin’s coordinates method [1, 3, 4]. The relevance of application this or that 
method of characteristics depends on the set boundary conditions. In the case of 
granular medium, the yield condition depends on the average stress [5, 6]. As it 
goes out of today’s surveys [7, 8], by now the most widely used yield condition 
of such a type has been the Mohr-Coulomb yield condition. In particular, this 
condition is used in a widespread model [9] and in a modern model for granular 
materials, developed in [10]. To construct the field of characteristics of the sys-
tem of equations consisting of the Mohr-Coulomb yield condition and the equi-
librium equations, the R–S method is generalised in [11]. In this study, the 
method of Mikhlin's coordinates is generalised to construct the field of charac-
teristics of this system of equations. It is shown that in the case when both char-
acteristics are curvilinear, the solution of the boundary value task is brought to 
solution of the telegraph equation. The methods for solving this equation under 
boundary conditions, typical for models of perfect rigid plastic solid and elastic-
perfectly plastic solid, have been well studied [1, 3, 4]. 

Let us point out that, the suggested method for determination of stress con-
dition may be used for a range of metal materials as well, as it follows from 
[12−15]. 

 
Generalised Mikhlin’s coordinates 

 
Let us consider arbitrary plane orthogonal coordinate system ( , )  and the 

Cartesian coordinate system ,x y . Both the systems are shown in the fig. 1. Let 
us consider arbitrary point P, determined by the radius vector R, the beginning 
of which coincides with the beginning of the Cartesian coordinate system. We 
introduce a rectilinear coordinate y , counted from the beginning of the Cartesian 
coordinate system in the direction of the coordinate  in the point P, and a recti-
linear coordinate x , counted from the beginning of the Cartesian coordinate sys-
tem in the direction of the coordinate  in the point P. Let 1e  and 2e be unit vec-
tors in the direction of axes x  and y  respectively. 

Since the curvilinear coordinates are orthogonal, it is obvious that the Mi-
khlin's coordinates are also orthogonal (fig. 1). The characteristics of the system 
of equations consisting of the yield condition which is independent of the aver-
age stress, and the equilibrium equations, are orthogonal. Therefore, we can ac-
cept that are characteristic coordinates. In this case, the values and separately 
satisfy the telegraph equation [1, 3, 4]. The characteristics of the system of equa-
tions consisting of the Mohr-Coulomb yield condition and the equilibrium equa-
tions are not orthogonal [5]. Let us denote the corresponding characteristic coor-
dinates. Without loss of generality, we can assume that the direction of the max-
imum (in the algebraic sense) of the main stress passes through the first and the 
third quadrants (fig. 2). 
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Fig. 1. Mikhlin’s orthogonal coordinates 
  

 
 

  
Fig. 2. Mikhlin’s orthogonal coordinates 
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Then Mikhlin’s coordinates ( , )x y  of the point P are determined from the 
equation 

 
.x y1 2R e e             (1) 

 
Then, the angle between the direction of this main stress and each of the 

characteristic directions equals 4 2  [5], where  – angle of internal fric-
tion. If the angle of internal friction is a constant value, then the angle between 
coordinate curves of the characteristic system of the coordinates is a constant 
value everywhere. Let us generalise definition of Mikhlin’s coordinates for these 
systems. Just like in the case of orthogonal coordinate systems, we introduce a 
rectilinear coordinate y , counted from the beginning of the Cartesian coordinate 
system in the direction of the coordinate  in the point P, and a rectilinear coor-
dinate ,x  counted from the Cartesian coordinate system in the direction of the 
coordinate  in the point P. It is obvious that now the system of coordinates 
( , )x y does not appear orthogonal. However, the equation (1) is valid, if the vec-
tors 1e and 2e  are directed along the new axes x  and y , respectively. This equa-
tion can be written as follows: 

 
,x y x y1 2i j e e                                              (2) 

 
here i  and j are unit vectors of the Cartesian coordinate system. Let  be the 
angle between the axis x and the tangent to the line  in the point P. Then, fol-
lowing the definition,  is the angle between the axes x and x  in the point O. 
Geometrically, we obtain (fig. 2)  

 
, , .cos , sin( ) sin cos( )1 2 1 2i e i e j e j e    (3) 

 
Multiplication of equation (2) scalarly by the vector i gives us 

,x x y1 2i e i e  and by vector j − .y x y1 2j e j e  Excluding in these equa-
tions scalar multiplications of unit vectors by means of (3), we find 

 
; .cos sin( ) sin cos( )x x y y x y          (4) 

 
Solving these equations for x  and y , we obtain 

 

; .
cos( ) sin( ) cos sin

cos cos
x y y xx y  
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Differentiating the first equation by , and the second by , we find 
 

;

.

cos cos( ) sin( )

cos( ) sin( )

cos cos sin ( sin cos )

x x y

y x

y y x y x

           (5) 

 
 

Equations of characteristics have the form [5] 
 

; .tg tg ctg( )
2

dy dy
dx dx

              (6) 

 
Here the first equation defines the lines of the family , and the second – 

the lines of the family . Equations (6) may be rewritten in the form 
 

; .tg ctg( )y x y x
                        (7) 

 
Putting (7) into (5), we obtain 

 

;

.

cos cos sin( )

cos ( sin cos )

x y x

y y x
 

 
Excluding in these equations x and y with the help of (4), we find 

 

; .cos ( sin ) cos ( sin )x yy x y x     (8) 

 
The only property of the coordinate system ( , )  which was used in the 

conclusion (8) consists in the scalar multiplication 1 2e e  being a constant value. 
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Stress condition in granular medium 
 

The equations (8) are simplified when considering the properties of charac-
teristic curves of the equations’ system consisting of the Mohr-Coulomb yield 
condition and the equilibrium equations. In particular, in [11] it is shown that 

 
0 ,( )cos                                         (9) 

 
here 0  is constant, introduced for convenience. Putting (9) into (8), we find 

 

.sin ; sinx yy x y x                             (10) 

 
Let us point out that with 0 these equations coincide with the equa-

tions, obtained in the theory of plasticity of materials, the yield condition of 
which does not depend on the average stress [1, 3, 4]. Let us introduce new de-
pendent variables X  and Y  by formulas  

 
.exp( ); exp( )x X n m y Y n m                      (11) 

 
Here n and m – constants. Putting (11) into (10), we obtain 

 

.sin ; sinX YmX Y X nY Y X                 (12) 

 
Accepting sinm  and sinn , we transform equations (12) into 

 

, .
X YY X                                            (13) 

 
Besides, equations (11) accept the form 

 
.exp ( )sin ; exp ( )sinx X y Y             (14) 

 
Equations (13) are brought to the telegraph equations of the form 
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2 2

.0; 0X YX Y                                (15) 

 
These equations are solved by virtue of Riemann method. In particular, 

along any closed contour there is the equation 
 

.0f G G fG f d f G d  

 
Here f X  or ,f Y  and ( , , , )G a b  – Green's function. Besides, 
 

0 ,( , , , ) 2 ( )( )G a b J a b  

 
where 0 2J a b  – Bessel function of the zero order. 

Having the solution of the equations (15), we can find the dependence of x 
and y from  and . The equations (14) virtually give dependence of x  and y  
from  and , and then the equations (4) and (9) are the dependence of x and y 
from  and . The dependence of the quadratic invariant of the stress tensor 
from  and  has the form [11] 

 
1 2

0 ,exp 2( )sin
2

q q                             (16) 

 
here  2  – the lowest (in algebraic sense) main stress; 
         0q  – arbitrary constant.  

The Mohr-Coulomb yield condition has the form 
 

,sin cosq p k                                              (17) 
 

here 1 2( ) 2p  and k – cohesion coefficient which is a constant value. 
The equations (16) and (17) determine 1 and 2  as functions  and . Consid-
ering (11), the dependences of stress tensor components in the Cartesian coordi-
nates from  and  are found with the help of standard equations of transfor-
mation of tensor components in the plane. Thus, considering the present the de-
pendence of x and y from  and , the dependences of stress tensor components 
in the Cartesian coordinates from x and y have been obtained in the parameter 
form. 
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Conclusion 
 

It has been shown that the earlier developed methods used for construction 
of stress field at plane deformation of material, subjected to a yield condition in-
dependent of the average stress, using Mikhlin’s coordinates, are fully applica-
ble for materials subject to the Mohr-Coulomb yield condition. To do this, it is 
sufficient to introduce the generalised Mikhlin’s coordinates x  and y  by formu-
las (fig. 2), as well as the auxiliary functions X  and Y by formulas (14). These 
auxiliary functions satisfy the telegraph equation (15). The same equation is sat-
isfied by Mikhlin’s coordinates in the theory of plasticity, based on the yield 
condition, independent of the average stress. The methods for solving the corre-
sponding boundary value tasks are well developed [1, 3, 4]. All these methods 
can be used almost without changes to determine the stresses in the granular 
medium. 
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