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ABSTRACT

BACKGROUND: Heterotopic ossification is the formation of bone tissues in the soft tissues of the body. A distinct form of
heterotopic ossification is neurogenic, that is, resulting from severe injury to the brain or spinal cord of different genesis.
Neurogenic heterotopic ossification is a complex multifactorial process of differentiated bone formation in the paraarticular
soft tissues of large joints. Heterotopic ossification leads to the formation of persistent contractures and ankylosis, which
cause severe disability and complicate rehabilitation.

AIM: To analyze publications dealing with various aspects of neurogenic heterotopic ossification.

MATERIALS AND METHODS: In the first part of our review, we present the results of the literature analysis on the epidemio-
logy, risk factors, pathogenesis, and clinic and laboratory diagnosis of neurogenic heterotopic ossification. Scientific literature
databases PubMed, Google Scholar, Cochrane Library, Crossref, and eLibrary were searched for without language limitations.
RESULTS: Current literature data on heterotopic ossification in patients with central nervous system pathologies are pre-
sented. Topical questions of etiology, risk factors, pathogenesis, and clinic and laboratory diagnostics of this pathological
process are highlighted.

CONCLUSIONS: Understanding the risk factors of heterotopic ossification development and their prevention in the context of
the modern knowledge of heterotopic ossification pathogenesis may help reduce the incidence of heterotopic ossification in
patients with severe central nervous system injury.
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AHHOTALMA

06ocHoeaHue. [eTepoTonMyeCKas 0ccMKaLIMA — 3T0 00pa30BaHNe KOCTHOI TKaHW B MAMKUX TKaHAX opraHuama. 0TaenbHoi
dopMoii reTepoTonUYECKOW 0ccbUKaLMK SBASETCA HEMPOreHHas, TO eCTb BO3HUKAIOLLAA B pe3ynbTaTe THAKE0ro noBpexae-
HWS FOJI0BHOTO MNIM CMIMHHOTO MO3ra pasfIMyHoro reHesa. HelporeHHas retepoTonmyeckas occuuKaLmMs — COXKHbIA MHOM-
(aKTopHBbIA Npouecc hopMupoBaHua auddepeHLUMPOBAHHON KOCTU B NapaapTUKYNAPHBIX MAMKUX TKaHAX KPYMHbIX CycTaBaXx.
[eTepoTonuyecKas occupmKaLMa NPUBOAUT K OPMMPOBAHMIO CTOMKUX KOHTPAKTYP M aHKWI030B, 00YCIOBNMBAIOLLMX TAXKENYHO
WHBaNMAM3aLMIO W 3aTPYLHALWMX peabunuTaumio 3TUX NaLMeHToB.

Llene — npoaHanuavpoBaTb NybNMKaLmMM No pasnnyHbIM acneKTaM HeMpOreHHowW reTepoToONUYECcKON 0CCUUKALMN.
Mamepuaner u Memodel. B nepBoii yacTu 063opa npeacTaeneH aHanu3 nuTepaTypbl, NOCBSALLEHHON 3nuaeMuonoruy, hakx-
TopaM pucka GpopMMpOBaHMs, NaToreHe3a, KITMHUYECKOM KapTWHbI U 1abopaTopHOI AMarHOCTUKM HeMporeHHoi retepotonuye-
CKoM occndmKaumu. Monck faHHbIX ocywlecTBAsnM B 6asax Hay4Hon nuTepatypbl PubMed, Google Scholar, Cochrane Library,
Crossref, eLibrary 6e3 si3bIkoBbIX orpaHuyeHmit. [nybuHa noncka coctaBuna 30 fet. B npouecce HanucaHMs CTaTbu UCMOMb30-
Ba/IM MeTof, aHanM3a U CUHTE3a MHOpMaLMK.

Pesynemamel. 3noxeHbl cOBpeMeHHbIe IUTepaTypHble AaHHbIe N0 NpobieMe reTepoTonUyecKoil occudUKaLmm y NaLumeHToB
C NaTonorueit LieHTpanbHoi HepBHOM cucTeMbl. OcBeLLeHbl akTyanbHble BOMPOCH! 3TUONOrUK, HaKTopoB pUCKa, NaToreHesa,
KJIMHUYECKOW KapTuHbI U NabopaTopHOM AUArHOCTUKW AAHHOTO NaToforMyecKoro npoecca.

3akntoyenue. oHMMaHWe (QaKTOPOB pUCKAa Pa3BUTUS HEWPOrEHHOW reTepoTONUYEcKOW occudMKauMn U Ux npodmnakTuKa
B KOHTEKCTE COBPEMEHHbIX 3HaHMIA 0 NaTOreHe3e 37O NaTeNOrMM MOXET CNocoOCTBOBATL CHUMEHMIO YacToTbl (hOpMUPOBaHUS
reTepoTONMYECKON 0CCUBMKALIMM Y NALMEHTOB C TAENbIM NOBPEXAEHUEM LIEHTPasIbHOW HEPBHOM CUCTEMBI.
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BACKGROUND

Heterotopic ossification (HO) is a pathological formation
of differentiated bone tissue outside the skeleton, that is, in
places not related by continuity with the initially determined
skeletogenous mesenchyme [1].

HO formation after injury was first described by Reidel
in 1883. A more detailed description of HO can be found in
the publications by Dejerne, Ceiller, and Dejerine-Klumpke,
who studied HO formation during the First World War in
soldiers with spinal cord injury (CSCI) [2].

HO can be either a clinical manifestation of hereditary
diseases, such as fibrodysplasia ossificans progressiva, or
an acquired condition resulting from injuries and burns [3].
HO has been reported to emerge during hematoma formation
and in a primary tuberculosis focus, postoperative scars,
foci of atherosclerotic calcification of large vessels and
heart valves, tumors of various histogenesis, ligamentous
apparatus of the spine, and other skeletal parts in the area
of ligament attachment [4, 5]. A neurogenic HO (NHO) is
a result of severe damage to the brain or spinal cord of
various causes such as severe traumatic brain injury (TBI),
CSCl, cerebral stroke, and cerebral anoxia [6].

This study aimed to analyze publications on various
aspects of NHO.

MATERIALS AND METHODS

Part 1 of this review presents the results of an analysis
of the literature on the epidemiology, risk factors for HO
formation, pathogenesis, clinical presentation, and laboratory
diagnostics of NHO. A data search was performed in
the scientific literature databases of PubMed, Google Scholar,
Cochrane Library, Crossref, and eLibrary without language
restrictions for a search depth of 30 years. Then, the obtained
information was analyzed and synthesized.

RESULTS AND DISCUSSION

Epidemiology and risk factors

NHO occurs in 10%-23% of patients with severe TBI,
10%-53% of patients with spinal cord injury [7, 8], and up to
65% of the patients who had blast injuries [9, 10]. According
to Reznik et al., who analyzed the treatment outcomes of
413 patients (TBI, n = 262; CSCI, n = 151), NHO occurs more
often after CSCI than after TBI, as NHO was diagnosed in
3.9% of patients with severe TBI and 10.6% of patients
with CSCI [11].

The literature presents extremely contradictory positions
on the sex-related incidence of NHO, that is, 2.5 times
in men [12, 13] and 4 times in women [14]. According
to an experimental modeling of HO in mice, 30% more
ectopic bone was formed in male than in female mice, and
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the authors attributed this to increased levels of insulin-like
growth factor-1 and bone morphogenetic protein (BMP) in
male mice [15].

Data on the age-related incidence of NHOs in the world
literature are more homogeneous than sex data. NHO is
more often detected at the age of 20-30 years; however,
this pathology develops less frequently in children than in
adults, mainly at the age of =10 years [7, 16, 17]. The earliest
detection of NHO was described in a 5-year-old child [16].
In pediatric patients, no clear correlations were found
between the incidence of NHO and sex [16, 17].

According to Estraneo et al., who retrospectively analyzed
the examination findings and treatment outcomes of 278 pa-
tients with brain damage of various etiologies, NHO occurs
more often in patients with TBI (19.3%) than in patients with
anoxic (10.7%) and vascular (6.4%) brain damage [13]. Among
patients with TBI, NHO was more often recorded in patients
with diffuse axonal injuries [14]. NHO was noted two times
more often in patients in a vegetative state following TBI
than in patients with a short-term impairment of conscious-
ness [17].

Citak et al. believed that complete dissection of the spinal
cord is the main predisposing factor in NHO formation in
patients with CSCI [18]. The location of spinal cord injury also
affects the incidence of NHO formation; as with damage at
the cervical and thoracic levels, the NHO risk is higher than
with damage at the lumbar level [19].

In addition to the direct finding of spinal cord or brain
injury, additional risk factors for NHO development have been
identified, namely, chest trauma, tracheostomy, nicotine use,
pneumonia, and urinary tract infection [18, 20].

According to many authors [13, 15, 18], artificial lung
ventilation is also a risk factor for NHO formation after both
TBI and CSCI. This is due to the development of respiratory
alkalosis resulting from prolonged artificial lung ventilation
in some cases, and this contributes to NHO formation [21].

Krauss et al. considered hypercoagulable states as
another risk factor for NHO occurrence in patients with
CSCI complications [22]. This theory is consistent with that
proposed by Reznik et al., who included deep vein thrombosis
in the group of additional risk factors for NHO in patients
with TBI and CSCI complications [11]. However, Yolcu et al.
cited data from their meta-analysis and systematic review of
the literature on risk factors for NHO development and declared
the absence of a correlation between deep vein thrombosis
and NHO risk in patients with CSCI complications [20].

According to Rawat et al., bedsores induce a local
inflammatory process, which may be a trigger for NHO
formation in patients with CSCI complications [23]. However,
some authors believe that NHOs develop not in all patients
with CSCl-related bedsores [18, 24].

Authors also have different and ambiguous positions
regarding muscle spasticity as a risk factor for NHO. Some
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authors still consider spasticity a risk factor [19, 20], whereas
others do not agree with this [2]. Spasticity is registered
in most patients with cerebral palsy; however, in modern
international and Russian literature, NHO development in
patients who have not undergone surgery or who have no
history of trauma has not been mentioned.

The role of immobilization as a risk factor for NHO is
still being studied [25-27], although Orchard et al. noted that
the duration of bed rest was the only risk factor that was
significantly associated with NHO formation [26]. These data
can be interpreted as a direct relationship between the lack
of movement and NHO formation; however, the period of
bed rest depends on other factors in the NHO formation,
such as the severity of damage to the brain and spinal cord
and bone and soft tissue injuries. Moreover, the duration of
bed rest increases the risk of bedsores and contributes to
the development of a chronic inflammatory process. Thus,
it is currently not possible to associate unambiguously
the absence of movements and NHO formation.

Pathogenesis

Currently, NHO is believed to be formed by endochondral
ossification, although some authors suggest that HO is
formed by intramembranous ossification [3, 28]. In a study
of 90 histological preparations from 18 patients with HO
of neurogenic and nonneurogenic etiology, Foley et al.
revealed that HO is formed by endochondral ossification and
described six successive stages of HO formation, namely,
perivascular lymphocytic infiltration, lymphocyte migration
into soft tissues, reactive fibroproliferation, neoangiogenesis
stage, cartilage formation, and enchondral bone formation.
According to the authors, they cannot completely exclude
the possibility of HO occurrence by intramembranous
ossification; however, this probability is extremely low,
given the lack of data on intramembranous ossification in all
histological preparations [29].

The time required for callus formation and complete
consolidation during fractures is significantly shorter in pa-
tients with concomitant injury of the central nervous system
than in patients without neurological pathology. This finding
was confirmed in experimental and clinical studies [30, 31].
Severe TBI and CSCl cause damage to the neurons, glia,
and vasculature, thereby triggering a complex cascade of
cellular and molecular changes that can contribute to fur-
ther damage later from the time of injury. In such traumas,
common mechanisms of secondary injuries may include ex-
citotoxicity (damage and death of nerve cells by neurotrans-
mitters that can hyperactivate NMDA and AMPA receptors),
ion imbalance, oxidative stress, ischemia, edema, and neu-
roinflammation (the intrinsic immune system of the brain is
activated by ischemia, injury, infection, and other factors,
which is mediated by the secretion of cytokines, chemo-
kines produced by the glia of the central nervous system,
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and endothelial and peripheral immune cells) [32]. Neuroin-
flammation causes damage to the blood-brain, blood-spi-
nal, and blood—neural barriers [33] and creates conditions
for the abnormal circulation of neuropeptides, particularly
substance P and calcitonin gene-related peptides, which
cause vasodilation, increase vascular permeability, and cre-
ate conditions for the peripheral migration of inflammatory
mediators and growth factors, potentially stimulating NHO
formation [32—34]. Gautschi et al. confirmed this hypothesis
in a laboratory. In vitro studies have shown that the pres-
ence of serum and cerebrospinal fluid in patients with TBI
increases osteoblast proliferation [35].

Genét et al. demonstrated the importance of the immu-
noinflammatory response as a necessary factor for NHO and
revealed through their experiment that transection alone of
the spinal cord does not lead to NHO in mice. The authors
hypothesized that NHO development requires concomitant
muscle tissue injury, which was modeled using the gener-
ally accepted muscle injury and repair model. The experiment
was repeated on different genetic mouse strains, and similar
results were obtained. As confirmed, this is not a genetically
predisposed phenomenon [36], and damage to both the cen-
tral nervous system and soft tissues is significant in NHO
development [34, 37]. This finding correlates with data on
the high incidence of NHO after mine blast injuries, causing
severe damage to the brain and spinal cord and soft tissues
of the extremities [38].

However, NHOs are formed in patients with stroke
complications who do not have a history of soft tissue in-
juries [39]. According to Alexander et al., in patients with
damage to the central nervous system, infectious and inflam-
matory processes (urinary tract infections, bedsores, trache-
ostomy, and pneumonia), which are considered risk factors
for NHO development, are a trigger for cytokine production
and immune system activation, which provides the basis for
HO formation [37]. According to some authors, systemic in-
flammation and cytokine storm can initiate HO development
in patients with severe COVID-19 [40, 41].

The release of cytokines and growth factors, including
interleukin-1B, interleukin-6, oncostatin M, neurotrophin-3,
activin A, bone morphogenetic proteins, transforming
growth factor B, and others, from lymphocytes, macro-
phages, and mast cells initiates the differentiation of cells
involved in NHO formation [3, 42]. The predominant source
of cells that form HO are local stromal/fibroblastic cells
of mesenchymal origin in the connective tissue of skeletal
muscles and fascia and circulating stem and progenitor
cells [1, 3].

Peripheral nerves are also sources of cells that
are involved in NHO formation [33]. The expression of
osteoblast-specific transcription factors has been identified
in cells obtained from the peri- and endoneurium following
HO induction [43]. When the integrity of the blood—neural
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barrier is disrupted, these cells migrate from the endo- and
perineural areas of the peripheral nerves to the area where
HO is developing and further differentiate into osteoblasts,
chondrocytes, and brown adipocytes [44].

Cells from experimental animals, which may be involved
in HO formation, were identified based on the expression of
TIE2, PDGFRa, SCAT, GLAST, FSP1, STROT, GLI1, and MX1.
However, in humans, these cell types have not yet been
accurately described. Other cell types may be responsible for
HO development in humans [45]. For example, researchers
do not have a consensus regarding the participation of
endothelial cells in NHO formation. According to Medici et
al., the expression of active ALK2 in endothelial cells causes
endothelial-mesenchymal transition and the acquisition of
a stem cell-like phenotype, which leads to the cell becoming
capable of osteogenic differentiation [46]. However, further
studies did not confirm the involvement of endothelial cells
in NHO formation, although their contribution to HO formation
was confirmed in an experimental burn and traumatic
model [47].

Numerous studies have indicated the involvement
of various signaling pathways, such as BMP/SMAD and
WNT/B-catenin, in HO regulation [24, 27, 48].

BMPs are members of the transforming growth fac-
tor beta (TGFp) superfamily. Canonical TGFB/BMP signaling
represents a linear cascade involving TGFB/BMP ligands,
two types of receptors (types | and Il), and signal transduc-
ers (SMADs). The binding of the receptor to BMP leads to
signal transduction through the SMAD 1/5/8 pathway and to
TGFp to the phosphorylation of SMAD2/3. Activated SMADs
bind to SMAD4, and the complex then accumulates in the nu-
cleus, where it regulates the target gene expression. One
of the downstream targets of these pathways is the gene
encoding RUNX2, a well-known master regulator of osteo-
genesis, which is also aberrantly expressed in ossified soft
tissues [49, 50]. The TGFB-dependent activation of SMAD2/3
promotes osteoprogenitor migration and differentiation at
early stages while suppressing further stages of osteogen-
esis. The TGFB-dependent pathway, which does not involve
SMAD, can lead to the activation of the p38 MAPK or ERK1/2
MAPK pathways through the TAB1-TAK1 complex, which in-
duces RUNX2 activation and promotes osteoclast differentia-
tion [51]. BMPs and TGFp can activate the SMAD-independent
pathway. Most BMP ligands are potent osteogenic agents,
acting through both SMAD-dependent and SMAD-indepen-
dent signaling pathways that induce osteogenic transcription
factors [52, 53].

The TGFB-dependent activation of SMAD2/3 promotes
the migration of osteogenesis precursor cells and their dif-
ferentiation at early stages but also inhibits osteogenesis at
further stages [54]. The TGFB/BMP signaling interacts with
other pathways during embryonic and postnatal develop-
ment. For example, the crosstalk between the canonical
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WNT pathway, TLR pathway, or mTOR pathway has been
described. Notably, mTOR modulates hypoxia and inflamma-
tion signaling in the early stages of HO, and in later stages,
the same pathway is critical for chondrogenesis and osteo-
genesis [52]. Increased mTOR pathway signaling was dem-
onstrated using a mouse model of fibrodysplasia ossificans
progressiva [55].

The hypoxic environment stabilizes hypoxia-inducible
factor 1a (HIF1a), which regulates the production of many
proteins, such as vascular endothelial growth factor or BMP,
which are involved in HO formation [42]. The analysis of
three different mouse models of fibrodysplasia ossificans
demonstrated increased HIF1a signaling under hypoxic
conditions [56]. HIF1a expression was also increased in
adipose tissue samples obtained from patients with severe
burns [56, 571.

However, the mechanisms underlying HO development
in noncarriers of any mutations are still unclear. Moreover,
even in patients with fibrodysplasia ossificans progressiva,
soft tissue HOs are not always consistently noted and
appear to result from traumatic injury and the body's
inflammatory response, strongly suggesting a link between
the immunoinflammatory response and HO.

Thus, in vivo experimental studies have shown that
the transplantation of bacteria into the tibia of an experimental
animal increases the callus volume. In the same study,
lipoteichoic acid (LTA), a TLR2 activator derived from
the bacterial cell wall, was identified as an osteostimulating
factor [58].

Data from these studies suggest that the underlying
mechanism of HO formation is related to TGFB/BMP path-
way signaling, which leads to the expression of osteogenic
transcription factors. Damaged tissue factors cause the ac-
tivation of the mTOR, WNT, or TLR pathway, which can ei-
ther interact with TGFB/BMP or act independently, namely,
promote the expression of osteogenic factors and induce HO
formation [27].

Clinical presentation

NHOs are formed para-articularly to the hip (60.9%),
knee (14.3%), elbow (21.3%), and shoulder (35%) joints,
limiting the range of motion of the affected joint, up to
complete ankylosis, leading to severe pain and compression
of nerves and blood vessels [8, 59].

We have not found a single case description of intra-
articular NHOs. Therefore, NHO is always extra-articular.
The joint capsule is also always preserved. The tendon
attachment sites can serve as landmarks during clinical
and instrumental examinations. The veins are compressed,
whereas the diameter of the periarticular arteries is usually
not altered. Certain patients may experience bursitis of
the affected joint as a response to damage to the periarticular
tissues in HO development [2].
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In patients with CSCI, NHO is usually detected caudal to
the level of the spinal cord injury, and the hip joints are most
often affected. According to Garland et al., damage to the hip
joints in these patients accounts for up to 97% of all clinically
significant NHOs [7].

Severe TBI results in generalized HO involving the peri-
articular structures of the hip, knee, elbow, or shoulder
joint [60]. In 40% of such patients, only one joint is involved
in the pathological process [28]. In more than two-thirds of
cases, NHOs are located in the periarticular tissues of the hip
joint or soft tissues surrounding the femur. In approximately
90% of patients with TBI and associated intra-articular frac-
tures or elbow dislocation, Hos develop in the area of the in-
jured joint, whereas the incidence of clinically significant HO
of the elbow joint in patients without severe TBI ranges from
3% to 6% [14].

According to Ebinger et al., the etiology of NHO can
influence its localization in relation to the hip joint, that is, in
55% of severe CSCI, NHO is located on the anterior surface of
the thigh, and in 40% of patients with cerebral stroke or TBI,
it is located on the anteromedial surface. The NHO located
on the posterior surface of the thigh was noted in 32% of
patients with complications of severe cerebral hypoxia [61].
Ko believed that with CSCI complications, hip-joint NHOs are
more often located postero- and anteromedially, and this is
associated with the static nature of the adductor muscles of
the thigh [62]. Garland had the same arguments, describing
NHO formation predominantly in the posteromedial parts of
the hip joint in patients with complications of severe TBI [7].
Quite often, NHOs are located between the anterior superior
iliac spine and the femur [61].

NHOs rarely extremely occur in the ankle and radiocarpal
joints, as well as in the small joints of the hands and feet
6, 71.

Regarding the timing of NHO formation, most often, they
develop between weeks 3 and 12 after CSCI [8]. According
to Wittenberg et al., the period at the greatest risk for
NHO occurrence is 5 months after CSCI [63]. The clinical
presentation depends on the disease phase, of which there
are four, namely, acute, subacute, chronic immature, and
chronic mature HO [64].

In the acute phase (approximately 2 weeks), dense, often
hyperemic edema is detected in the area of HO formation.
Edema is located around the joints and can significantly limit
movement in them. In this phase, the clinical presentation
resembles thrombosis of the veins of the lower extremities,
which leads to frequent diagnostic errors, particularly
if it is impossible to conduct ultrasound diagnostics of
blood vessels and doctors are unaware of other possible
causes of these symptoms [65]. The onset of the clinical
manifestations of NHO in patients with CSCI may not be
accompanied by subjective sensations because of sensory
deficits characteristic of this type of injury. These patients
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experience increased body temperature and muscle
spasticity. If the NHO is small, then its formation would not
be accompanied by local reactions, such as hyperemia, local
temperature increase, and edema. HOs of this size rarely
induce contractures in the joints of the limbs and, therefore,
do not impair the quality of life [15].

In the subacute phase (2-8 weeks), signs of the local
inflammatory process regress, and affected joints had limited
movements [8]. HOs occur in soft tissues, expand, and fuse
with the periosteum of adjacent bone structures [2].

In the chronic phase of immature HO (6-8 months),
dense, irregularly shaped masses are palpated in the affected
joint site, and the joint range of motion decreases [3].

The maturation of bone tissue ossification is completed
within 6—18 months. Mature HOs resemble normal bone
tissues both histologically and radiographically and consist
of tubular bone with Haversian canals, cortical layer, blood
vessels, and bone marrow with some level of hematopoi-
esis [45].

In the chronic phase of mature HO (8-18 months),
joint ankylosis can occur. Pathological formations palpated
in the affected joint are already characterized by bone
density [15]. Some authors note that joint ankylosis is formed
in the immature HO phase [28, 61].

Laboratory diagnostics

Nonspecific markers of inflammation, such as C-reactive
protein, can be used to monitor disease activity, as
normalization of C-reactive protein levels correlates with
the resolution of the inflammatory phase of HO [62]. According
to Wilkinson and Stockley, a rise in body temperature in
combination with increased C-reactive protein levels and
creatine kinase activity should be regarded as HO signs [66].

Alkaline phosphatase (ALP) is a sensitive but nonspe-
cific indicator of HO. During HO formation, the ALP level
increases significantly. However, as soon as the growth
of ossification stops, the enzyme level decreases and
returns to normal; therefore, it cannot be used for diag-
nosing HO [67]. ALP levels begin to increase within an av-
erage of 7 weeks before the emergence of the first clinical
signs of HO and reach a peak within 3 weeks before
clinical manifestations occur. From this time on, the ALP
level decreases gradually and reaches normal levels
within approximately 5 months. The degree of increase in
ALP levels depends directly on the HO size. Massive bone
formation can lead to a long-term increase in ALP levels,
whereas minor HO may not be accompanied by its chang-
es [28]. According to Kluger, ALP levels did not increase
in most pediatric patients [16]. Thus, the normalization of
the ALP level does not indicate the stabilization and ces-
sation of the NHO growth. However, nowadays, the mea-
surement of ALP levels is the only widely available method
in the differential diagnostics of early NHO with other
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inflammatory processes because this indicator increases
noticeably during the active growth of NHO and does not
change significantly during inflammation [67].

Prospects for laboratory diagnostics

The dysregulation of microRNAs may be significant in HO
development. For example, decreased levels of microRNA-421
in patients with humeral fractures are associated with
the overexpression of BMP2 and a higher incidence of
HO [68]. In the future, changes in microRNA levels can be
considered possible indicators of NHO development.

HO formation is characterized by a significant increase
in bone tissue formation compared with those in practically
healthy individuals and patients with CSCI without NHO. Eds-
berg et al. conducted a comparative analysis of the proteomic
profile of the blood serum of patients with HO of nongenetic
etiology and patients without HO (control group, after total
hip replacement), which established that the production of
the preproprotein osteocalcin, a precursor of osteomodulin
and the preprotein of isoform 2 chain of alpha-1 (v) collagen,
increased statistically significantly in the HO group. These
proteins can be considered potential clinical biomarkers of
HO [69]. Povoroznyuk et al. believed that an osteocalcin level
of >49.6 ng/mL and N-terminal propeptide of type 1 procolla-
gen level of >187.3 ng/mL should be considered NHO markers
in patients with CSCI complications, and these markers can
be included in the diagnostic algorithm [67]. Further study of
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