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BACKGROUND: Reconstruction of extensive defects to bone tissue is one of the important problems of orthopedics and
traumatology. Especially in acuteis, the problem is associated with the restoration of bone tissue in conditions of its deficiency
in pediatric patients.

AIM: The aim of the study is to analyze modern methods of surgical treatment in children with extensive bone tissue
injuries based on the published literature.

MATERIALS AND METHODS: Our report presents a review of the literature of methods of surgical treatment of exten-
sive bone defects. The literature search was carried out in several databases such as PubMed, ScienceDirect, E-library,
GoogleScholar for the period from 2005 to 2020, using the keywords given below. As a result of the search, 105 foreign and
37 domestic sources were found. After exclusion, 56 articles were analyzed, all presented works were published in the last
15 years.

RESULTS: The gold standard for replacing bone defects is still the use of autografts, including the use of technologies on
a vascular pedicle. Various types of xenografts and allografts of bone tissue are increasingly being replaced by various kinds
of synthetic implants.

CONCLUSIONS: To date, there is no single generally accepted standard for the surgical treatment of extensive bone
defects. The option of surgical treatment of extensive bone tissue defects using tissue-engineered bone implants with axial
blood supply seems to be extremely interesting and promising.

Keywords: extensive bone defects; pediatric traumatology; bone autografts; bone grafting in children; allograft; orthopedics;
traumatology.
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0bocHosaHue. PeKOHCTPYKUMA 0BLIMPHBIX NOBPEMAEHUA KOCTHOM TKaHW ABNAETCA OJHOW M3 aKTyasibHbiX npobnem
opTonenuu v TpaBmartonorun. OcobeHHo 0CTPO CTOMT BOMPOC, CBA3AHHbIN C BOCCTAHOBNEHWEM KOCTHOW TKaHW B YCNOBUAX
ee feduuMTa y NaLLMEHTOB AETCKOro Bo3pacTa.

Llenv — npoaHanu3vpoBaTb COBPEMEHHbIE CMOCOObLI XMPYPrUYECKOr0 fIeYeHWA AeTeN C 06LUMPHBIMU NOBPEHAEHNAMM
KOCTHOW TKaHW Ha OCHOBE JIUTEPATYPHbIX JaHHbIX.

Mamepuanel u Memodsl. B cTatbe npepncrasnieH 0630p nuTepaTyphl, NOCBALLEHHBIA METOAAM XWMPYPryUYecKoro Jie-
YeHMA 0BWMPHBIX LedeKTOB KOCTHOM TKaHW. MoucK nuTepaTypbl ocywecTBnAnM B 6asax aaHHbix PubMed, ScienceDirect,
eLibrary, GoogleScholar 3a nepvog c 2005 no 2020 r. no Kno4eBbIM coBaM. bbinu BoisBNeHb! 105 MHOCTpaHHBIX U 37 oTe-
YeCTBEHHbIX UCTOYHMKOB. [locne UCKIYeHWA NpoaHanM3npoBaHbl 56 cTaTelt, Bce NpeacTaBeHHbIe paboTbl 0My6AUKOBaHbI
B nocnegHue 15 ner.

Pesynemamel. 30n0TbIM CTaHLAPTOM 3aMeLLEHUA KOCTHBIX JedeKTOB No-MpeHeMy 0CTAeTCA MCMO/b30BaHWE ayTo-
TPaHCN/AHTAToB, B TOM YKC/IE C MPUMEHEHWUEM TEXHOMOMUI HA COCYAUCTON HOMKeE. PasnnyHble BUAbI KCEHOTPaHCMNaHTa-
TOB U aNNOTPAHCIN/IAHTATOB KOCTHOM TKaHM BCE aKTUBHEE BbITECHAIOTCA Pa3/IMYHOI0 Poia CUHTETUYECKUMU MMMIAHTaTaMu.

3aknoyeHue. Ha cerofHAWHUIA OeHb He CyLLecTBYeT eAMHOr0 06LLENPUHATOr0 CTaHAapTa XMPYPruyecKoro feyeHns
06LLUMPHBIX AeQEKTOB KOCTHOM TKaHW. KpaiiHe MHTEpPECHBIM M NepCreKTMBHLIM NpeLCcTaBNAeTCA BapUaHT XUPYPriveckoro
neveHnA 06LIMPHbIX AedeKTOB KOCTHOM TKaHWU C UCMO/b30BAHWEM TKAHEMHHKEHEPHBIX KOCTHbIX UMMMAHTAaTOB C OCEBbIM
KpOBOCHabKeHMEM.

KnioueBble cnoBa: 06LIJVIprIe noBpexaAeHNA KOCTU; OETCKAA TPaBMAaTo/10rnA; KOCTHbIE ayTOTPAHCNAHTATbl; KOCTHAA na-
CTUKa 'y neten; aNiN0TpaHCNNaHTaT, opToneaunaA; TpaBMarto/iorud.
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BACKGROUND

Congenital and acquired pathology of the musculoskeletal
system is a significant medical and social problem. Currently,
the number of patients with bone defects of various
localizations is increasing [1]. The prevalence of orthopedic
pathology ranges from 47 to 237 cases per 1000 children.
Approximately 30% of cases of childhood disability are
associated with congenital pathology and developmental
anomalies of the lower extremities [2].

Causes of bone tissue defects are traumatic injuries
and their consequences, congenital malformations, and
destructive, infectious, and tumor damage to bone struc-
tures.

Bone defects of critical size are the most difficult clinical
cases because they can lead to incomplete restoration or loss
of function of the injured limb and ultimately disability. Such
conditions often require bone transplantation [3]. Defects of
critical size are defined as lesions, for which spontaneous
healing is uncharacteristic. This indicator depends on age,
anatomical area, type of damage, and many other factors;
therefore, clear quantitative boundaries, especially for
children, have not yet been determined [4].

Extrafocal osteosynthesis is one of the surgical treatment
methods of patients with injuries of the musculoskeletal
system, including those accompanied by impaired skin
integrity and bone defects. Active research is currently
undertaken on the use of a temporary fixation device in
combination with promising and less-investigated implants
and surgical techniques.

Recent studies have investigated the use of electrical
stimulation to restore bone defects in the area of callus
formation [5]. For this, three main types of electrostimu-
lators are used: invasive, semi-invasive, and noninvasive.
Stimulation by the cathode of the fusion site of the bone
fragments within a certain range of current and its frequency
has a beneficial effect on tissue regeneration. However, at
present, electrical stimulation in clinical practice is still un-
clear [5].

Xeno-, allo-, auto-, and tissue-engineered grafts can
be used as a biological material for filling extensive bone
defects.

Bone tissue autograft remains the gold standard in the
treatment of musculoskeletal defects [6, 7]. Rapid incorpo-
ration and consolidation in the absence of immunological
reactions make the use of autologous bone the most at-
tractive. The autograft has osteogenic, osteoconductive, and
osteoinductive properties.

Xenografts are potentially capable of solving bone
tissue deficiency with extensive bone defects, but
their main disadvantage is the risk of developing an
immunological response of the recipient to the donated
graft [3]. In addition, the vascularization technique of
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xenografts is available. However, despite the urgency of
the problem and active research in this direction, there
has been no success in the use of this type of transplant
in clinical practice [8].

Allografts are more widely used in comparison with
xenografts, up to the transplantation of the upper extremities;
however, with this option of replacing bone defects, despite
modern methods of processing biological materials, there is
a risk of transmission of human immunodeficiency virus as
well as hepatitis B and C viruses. Thus, problems associated
with allograft resorption and remodeling in the recipient’s
body remain relevant [9, 10].

The creation of synthetic materials, taking into account
the physiological mechanisms of restructuring and
remodeling of bone tissues, and development of engineered
tissues led to the development of new synthetic implants
used as osteoplastic material, including those with the
possibility of additional implant colonization with stem cells
[11, 12]. However, in most cases, these works are presented
by experimental studies.

Moreover, tissue-engineered implants based on various
materials using prefabrication methods [13] or vascularized
with an arteriovenous loop (AVP) are highlighted. Such
implants combine some of the advantages of vascularized
allo- and autografts and artificial implants [14, 15].

This study aimed to analyze modern methods of
surgical treatment of children with extensive bone damage
based on the data available in the literature.

MATERIALS AND METHODS

This study presents a review of the literature on the
methods of surgical treatment of extensive bone defects.
The literature search was performed in the databases of
PubMed, Science Direct, eLibrary, and Google Scholar for
the period from 2005 to 2020 using the following keywords:
“extensive bone damage,” “Pediatric traumatology,” “Bone
autografts,” “Bone grafting in children,” “allograft,” “ortho-
pedics,” and “traumatology.” As a result, 105 foreign and
37 domestic sources were found. After exclusion, 56 articles
were analyzed, and all of them were published in the last
15 years.

The following were the criteria for inclusion of articles
in the study: full texts are available or structured annota-
tions; clinical or experimental studies using bone replace-
ment techniques; articles should contain quantitative data on
the assessment of treatment results, its effectiveness, and
safety; and authors, rating scales, and tests are indicated.
Studies with signs of “duplication” were excluded (similar
research protocol, similar groups and number of patients,
similar group of authors, etc.). If a “duplicate” article was
found, the most recent article in terms of publication date
was selected.
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RESULTS AND DISCUSSION

Spongy and compact autografts are distinguished.
Spongy autograft is most often used in clinical practice, and
it is characterized by high osteogenic, osteoinductive, and
osteoconductive properties. Due to its porous structure, the
graft can be completely vascularized within 2 days. Callus
formation ends after 8 weeks, and a complete restructuring
of the graft occurs within a year. This process is performed
due to gradual replacement, defined as the simultaneous
deposition of a new osteoid by osteoblasts and resorption
by osteoclasts of the necrotic donor trabeculae. This type of
graft provides fast fusion of fragments but does not create
rapid structural stability [7, 16]. In most cases, traditional
nonvascularized bone grafting is sufficient. In previously
unsuccessful transplantation of nonvascularized bone,
especially in infectious complications, vascularized bone
graft is acceptable [17]. The most commonly used donor site
for cancellous autograft is the ilium. Undesirable phenomena
following autograft collection include severe pain in the area
of graft removal, damage to the lateral cutaneous nerve of the
thigh, hematoma formation, and infectious complications [3].

The autogenous compact bone cortical graft provides
an osteoconductive conductive medium with minimal
osteoinductive and osteogenic properties. It is used for
structural defects that required immediate mechanical
stability for healing. The dense matrix results in relatively
slow revascularization and incorporation, as resorption
must occur before the new bone can be deposited. This
feature is the reason for the poor osteogenicity of this type
of graft. Within the first 6 months after implantation, these
nonvascularized autografts are resorbed, become weaker,
but retain their structure [3, 7]. An autogenous cancellous
compact bone graft offers the benefits of both bone
types: immediate structural stability of compact bone and
osteoinductive, osteoconductive, and osteogenic properties
of the cancellous bone. Despite this, the donor resource for
taking an autograft is extremely limited [16].

Surgical treatment with bone autograft does not require
special equipment. Thus, it is necessary to ensure the
aseptic condition of recipient tissues and maintain sufficient
blood supply to the receiving bed. In the first days after
transplantation, the transplanted fragments obtain nutrition
through the diffusion of nutrients from the surrounding
tissues; at a later stage, blood supply is realized due to the
germination of blood vessels from the surrounding tissues.
Autografts perform the function of an osteoconductor,
slowly revascularizing. A free bone graft is less effective
in reconstructive surgery than a vascularized one, since
osteocytes die because pf insufficient blood supply and the
graft undergoes partial resorption. In its place, a new bone
is formed under the influence of pluripotent cells of the bone
marrow and surrounding tissues [16, 17].
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To improve consolidation, in some cases, autografts
can be taken together with the vascular pedicle. Free
vascularized grafts provide the most effective result and are
indicated for large bone defects [16, 18, 19].

Vascularized grafts are traditionally taken from the
iliac crest with its deep circumflex iliac artery, fibula with
branches of the peroneal artery, distal end of the radius
with the supraretinacular artery, or ribs with the posterior
intercostal artery [6, 17]. More than 90% of osteocytes can
survive, which makes this graft maximally osteogenic [16].
The donor areas for the collection of an autograft are
extremely limited. With the transplantation of the graft on
the pedicle, an additional limiting factor is the collection of
the artery supplying a limited area, together with the bone.
Insufficient blood supply to the bone will result in its partial
resorption and decreased graft strength [20]. In a major
review on this topic, Roddy et al. reported that the success
of bone fusion after vascularized fibula transplantation
ranges from 70% to 100%, and the average fusion time is
approximately 6 months [3]. The rate of return to weight
bearing and adequate functionality is also usually high at
over 96% [3]. In contrast to an allograft, a vascularized
autograft is actively involved in regeneration and provides an
increased rate of hypertrophy and tissue fusion. Vascularized
tissues have high resistance to infectious processes in
comparison with nonvascularized grafts [6, 17].

Autotransplantation of vascularized bone tissues in the
treatment of children has several salient points [7, 21, 22].
First, they are dictated by the possibility of further active
growth of the length and width of the bone [21, 22]. One of
the promising directions in this area is performing surgery
on areas of epiphyseal bone growth, when restoration of
articular function is required while maintaining the axial
growth of the limbs. In such cases, conventional methods
have several limitations, since they do not consider the
disturbed nutrition of the epiphyseal plate, which leads with
age to a progressive discrepancy in the length of the limbs
[23, 24].

Thus, during the vascularized fibular epiphyseal transfer
(i.e., transplantation of the vascularized fibular epiphysis),
an area of the proximal fibular epiphysis is isolated with
feeding legs that provide blood supply to the periosteum
and endosteum, which supports epiphyseal growth [23].
Most often, the peroneal artery is used as the anastomotic
leg (93%) and, in more rare cases, the anterior tibial
artery [25].

In addition, autotransplantation of vascularized bone
tissues in children are characterized with higher resistance
to infections, increased spasticity of the arteries [21, 22],
a low incidence of complications from the feeding pedicle
due to the absence of age-related atherosclerotic and
arteriolosclerotic changes in the vascular wall, and the
absence of varicose veins in most patients [26, 27].
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The characteristics and anatomical features of the fibula
make it possible to use a vascularized autograft to replace
almost any damaged bone. In particular, the isolated head
of the fibula is used in the reconstruction of the shoulder
joint [23, 25].

The bone growth plate can adapt the growth rate for
different bones in pedicle autologous transplantation. This
judgment is based on an earlier study of the growth rate of
an autograft of the fibula during the reconstruction of tubular
bones, i.e., 0.92 cm annually [23]. When transplanting
a vascularized portion of the fibula to the calcaneus, the
growth rate is 0.56 cm annually, which indicates a significant
slowing down of the growth rate [28].

Autologous bone tissue transplantation surgery is at risk
of complications. Early undesirable postoperative events
include anastomotic leakage or thrombosis, neuropraxia
of the deep peroneal nerve, and superficial skin infections,
and delayed events include “late” anastomotic leakage,
inconsistency in the length of healthy and operated limbs,
graft fracture, flexion contracture of the limb, and ruptured
skin necrosis over the surface of the autograft [25].

A systematic review of complications following
transplantation of a vascularized fibula showed an overall
incidence of early complications at the donor site (including
infection, dehiscence, delayed wound healing) of 9.9% for
wounds closed primarily and 19.0% for wounds requiring skin
graft closure. Late complications include chronic pain (6.5%),
gait disturbance (3.9%), ankle instability (5.8%), limited
joint range of motion (11.5%), and sensory deficits (7.0%).
In general, disadvantages of an autograft of the fibula include
possible soreness of the donor site, extended operation
time, fracture risk, especially of the lower extremities, and
a complex microsurgical technique [3].

The technique for vascularized autograft is difficult,
requires in-depth knowledge, and certain calculations for
the formation of a musculocutaneous flap. Nevertheless,
this technique can be the best option in the treatment of
musculoskeletal pathologies in pediatric patients. Achieving
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long-term and necessary growth of the transplanted bone
without its resorption is the most necessary parameter for
children. Given the adaptive remodeling of the bone over
time, this method can be used to replace almost any defects
in the bone structure.

After surgery, graft viability should be assessed. The use
of angiography for this purpose is not informative enough;
even complete vascular patency does not indicate the
viability of the graft. A more suitable option is to perform
scintigraphy with technetium (Tc-99)-active accumulation
of the radiopharmaceutical agent in the graft area indicates
sufficient blood flow [29].

A bone graft at sizes >6 ¢cm needs vascularization.
In a systematic review by Allsopp, researchers tried to
challenge this thesis [30], but as arguments, they cited in-
sufficiently statistically reliable outcomes and limited re-
search on this issue. These studies did not reveal the ad-
vantages of vascularized autografts over nonvascularized
ones [30]. However, several researchers, whose work was
not included in this systematic review, disagree. The advan-
tages of vascularized autografts are evident in the treat-
ment of children, when continued bone growth is possible
[7, 221.

In addition to various transplantations types, various
implants are used in the treatment of musculoskeletal
diseases, such as the use of synthetic materials covered with
stem cells [11, 12], composites based on hydroxyapatite [31],
implants based on porous ceramics [32], and titanium and
titanium alloys [11].

Such implants are greatly compatible with the recipient’s
tissues, less traumatic, and relatively easy to use [11, 31, 32].
However, synthetic implants do not possess the properties
of biological tissues, namely, the ability to grow and develop,
which is important in the treatment of pediatric patients. In
addition, their physicochemical properties are not completely
identical to native bone tissues.

Potentially, the success of autotransplantation of bone
tissue and the reduction of complications can be achieved

Table 1. Local and systemic factors affecting the success of bone transplantation (according to Khan et al. [7])

Factors Positive Negative
Local Mechanical load Mechanical instability
Mechanical stability Wound infection
Electrical stimulation Radiation
Large contact area Denervation
Growth factors
Systemic Vitamins A and D Corticosteroids

Thyroid and parathyroid hormones
Growth hormones
Insulin

Nonsteroidal anti-inflammatory drugs
Chemotherapy

Smoking

Sepsis

Diabetes

Malnutrition

Metabolic diseases of bone tissue
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Fig. 1. Radiographs of a vascularized fibula autograft at the site
of the femur defect immediately after surgery and after 9 months
(the red arrow indicates the line along which the graft was incor-
porated) [29]

by addressing contributing factors (Table 1) [7]. Thus, several
researchers argued that in the postoperative period, the use
of nonsteroidal anti-inflammatory drugs and glucocorticoids
is undesirable, and the parallel administration of radio- and
chemotherapy significantly increases the consolidation time
of bone autografts [3, 71.

Another factor that can have a positive effect on bone
autograft is the level of mechanical stress. According to
Wolf's law, the bone adapts to stresses. With an increasing

Tom 9, N2 3, 2021

ODTOHQLLMH, TpaBmarosorva
1 BOCCTaHOBKTE/TbHAA XMPYPrina OETCKOro Bo3pacta

load, the trabeculae are involved first in the restructuring,
followed by the cortical layer, which leads to a compaction
of the structure and a subsequent increase in bone strength.
With a decrease in load, the bone tissue degrades, becomes
looser, and its strength decreases [26].

Vascularized grafts undergo the same adaptation and
remodeling as the native bone [26]. Given this property of
bone tissue, with appropriate load on the graft, the grafted
bone can grow in thickness to the size of a normal bone
(Fig. 1) [26, 29].

Reconstruction of tissue defects using various tissue-
engineered materials is a promising technique and an
alternative to auto- and allotransplantation [14]. A study
described successful experience of using tissue-engineered
implants of the skin, urethra, blood vessels, flat bones,
and cartilage tissue [33]. These tissue-engineered implants
have one thing in common -they are thin, which facilitates
diffusion of nutrients and oxygen. The situation is completely
different with larger implants because thicker implants do
not allow diffusion of nutrition [34]. Such implants require
additional axial blood supply [14], especially immediately
after their placement in the target area [35, 36]. A variant of
such a blood supply is feeding the graft with a blindly closed
arteriovenous bundle, a through arteriovenous bundle,
or a shunted AVP [14, 37, 38] (Fig. 2). The most effective
technique, according several studies conducted by Tanaka
et al., is the use of an AVP; this alternative had the highest
rate of implant vascularization [39]. The key factors for
neoangiogenesis were hypoxia [33, 40] and turbulent blood
flow in the anastomosed region, stimulating the production
of connexin 43 [41].

Fig. 2. Cameras used by Weigand et al. [38]: g, vascularization of the graft from the arteriovenous loop in a completely isolated chamber;
b, vascularization of the graft from the arteriovenous loop and from the surrounding tissues in a perforated chamber; ¢, general view of
a continuous Teflon polymer chamber; d, general view of the matrix made of NanoBone material; e, general view of a perforated titanium
chamber; £, general view of a continuous chamber with a matrix and an arteriovenous loop located inside (the lid is open); g, general
view of a perforated chamber with a matrix and an arteriovenous loop placed inside (the lid is open); h, general view of a continuous
polymer chamber with a matrix and an arteriovenous loop located inside (the lid is closed, the chamber is fixed with sutures to the sur-
rounding stitches); and J, general view of a perforated chamber with a matrix and an arteriovenous loop placed inside (the lid is closed,

the chamber is fixed with sutures to the surrounding tissues)
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For the first time, the technique of providing blood
supply through AVP formation was proposed by Erol
and Spira (1980). They successfully used this method to
provide nutrition for the free skin flap [14]. Lokmic and
Stillaert (2007) published their results of an experiment to
create an AVP in an isolated polymer chamber. As a result,
a fibrin clot formed around the AVP, which, gradually
growing by arterioles and venules, was subsequently
replaced by viable connective tissue [33].

Kneser et al. (2006) published the results of an
experiment on artificial vascularization of a sample from
processed bovine cancellous bone (PBCB) in an isolated
chamber. For 8 weeks, the sample germinated with
vessels, and connective tissue was found in the pores [14].
Other authors have described their experience of injecting
a gel containing osteoblasts into a PBCB matrix and a gel
containing vascular endothelial growth factor and basic
fibroblast growth factor into fibrin matrices [42]. Osteoblasts
survived for some time in PBCB matrices, but they were
soon replaced by connective tissues. The authors explained
that this was due to an increased reaction to the foreign
structure of the PBCB; therefore, they suggested using other
biocompatible materials that cause a lower formation of
a connective tissue capsule as well as osteotropic growth
factors [43].

Beier et al. (2010) published results of their experiment
in which the AVP was immersed in a chamber filled with
a composite of ceramic granules, fibrin, hydroxyapatite,
and calcium phosphate. Computed tomography and
histological examination revealed active vascularization of
the composite by 12 weeks, but without the bone tissue
formation [44]. In 2014, the same authors presented the
successful application of the technique with the addition
of autogenous cancellous bone and growth factors in two
patients with extensive defects of the tibia and radius after
osteomyelitis. At 36 and 72 months after surgery, the
patients had bone formation at the site of the defect with
full AVP patency [45].

However, none of the above options of using AVPs in an
isolated chamber resulted in the formation of full-fledged
bone tissues [43, 44, 46]. Osteoblasts [43] and mesenchymal
stem cells [45, 47] were used to induce the bone tissue
formation in the chamber; for their differentiation, it was
recommended to introduce various factors into osteogenic
cells (e.g., bone morphogenetic protein-2 [BMP-2]) [46-48]
with sustained release [49].

A group of scientists managed to obtain full-fledged
cancellous bone tissue in 2012 in an experiment on sheep.
AVP was immersed in a matrix of B-tricalcium phosphate
in combination with hydroxyapatite granules, injected with
a medium with mesenchymal stem cells and recombinant
BMP-2 [50]. The MSC and BMP-2 combination has been used
previously [Jones et al. (2006) used a collagen sponge as

Val 9 (3) 2021

Pediatric Traumatology, Orthopaedics
and Reconstructive Surgery

a matrix]; however, with to the lack of an isolating chamber,
the newly formed bone had an irregular shape and fused
with the surrounding tissues, which created additional
trauma during its release [51].

At present, prefabrication of a bone implant is another
method is successfully used in clinical practice [14],
which is not inferior in terms of the effectiveness of AVP.
The future implant is temporarily placed in the thickness
of soft tissues for vascularization from the surrounding
tissues; after a certain period, it is removed and placed in
the target area. Thereafter, the germinated vessels in the
thickness of the implant are sutured with the surrounding
vessels. However, this method has drawbacks: the
submerged implant quickly becomes overgrown with
connective tissues, which can prevent further growth
of the target tissue [15]. Weigand et al. combined
these techniques using perforated titanium rather than
a continuous polymer chamber (Fig. 2). As a result, there
was rapid vascularization of the graft without significant
invasion of connective tissues [38]. To solve this problem,
a modified guided bone regeneration technique was
also proposed, which consists in creating a temporary
mechanical barrier from a biodegradable membrane
(50% poly(lactic acid)/50% polycaprolactone [PLA/PCL])
between the future implant and the surrounding tissues.
The implant was fed by axial blood supply and partially by
diffusion through the membrane. Then, the implant grew
with new vessels, i.e., branches of the axial bundle, while
there was no replacement with connective tissue from the
outside [52].

In experimental studies on rabbits, Eweida et al. used
subcutaneous vessels [53], and Dong et al. used the popliteal
artery and anastomosed it with the femoral vein [13].
In other studies, researchers used larger animals and varied
locations of the chamber with the implant [44, 48].

The most common complication, regardless of the animal
or location of the chamber, is AVP thrombosis [54]. For its
prevention and treatment, several authors recommended the
use of anticoagulants and antiplatelets in the postoperative
period [41, 55].

In summary, in most works, continuous cylindrical
chambers made of polymer material (Teflon [14] or
polycarbonate [33]) have been proposed. In some works,
membranes made of expanded polytetrafluoroethylene [56]
and PLA/PCL copolymer [52] were used. In some studies,
a camera was not used [15]. Some authors used perforated
chambers made of Teflon [37, 53] and titanium [38] instead
of solid ones. In most cases, natural coral [56], b-TCP [15],
PBCB [14, 42, 43], and composite materials [44, 50] were
used as materials for matrix fabrication.

The results in most cases were assessed using the
following techniques: intravital magnetic resonance im-
aging of a camera with AVP, postmortem microcomputed

00I: https://doi.org/10.17816/PTORS65071

359



360

0B30P JINTEPATYPHI

tomography with MICROFIL injection, immunohistochemi-
cal examination and staining of histological sections of the
chamber contents [50], scanning electron microscopy [56],
preparation of corrosive preparations, and injection of In-
dian ink [43]. Unfortunately, most of the experimental work
was descriptive; in the course of their implementation, the
quantitative indicators and reliability of the results obtained
were not assessed.

Thus, despite the high cost of components and
requirements for technical equipment, the technique of
tissue-engineered implants with axial blood supply can
become a promising alternative to autotransplantation
because of lesser trauma and the lack of restrictions in graft
shape and size.

CONCLUSION

Despite the successes achieved in the development
of autotransplantation technique of vascularized bone tis-
sues, this direction may be extremely relevant for further
research. The technique is of great interest in the field of
pediatric orthopedics and traumatology given the anatomi-
cal characteristics of children, a wider range of diseases,
and the high efficiency of using grafts in areas of growing
bone.

Moreover, until now, there is no unified approach and
recommendations for the use of this method; thus, it remains
a field of creativity and experimentation for practicing
doctors. For the same reason, bone autotransplantation on
a vascular pedicle is rarely performed and, in most cases,
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is inaccessible to the bulk of patients, despite the promising
nature of its use.

Synthetic tissue-engineered implants with axial blood
supply can become a possible alternative to both traditional
methods and vascularized bone autografts. This approach can
level both several disadvantages of allotransplantation and
key disadvantages of autotransplantation, namely, limited
material for transplantation. Studies on the reconstruction
of bone defects using such tissue-engineered materials have
shown the qualitative possibility of using this technique,
which allows us to highlight its promising potential in
practical medicine, but further active development is still
needed.
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