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BACKGROUND: Ciliopathies include the large group of hereditary diseases caused by mutations in the genes encoding 
primary cilia components. The largest type of skeletal ciliopathies is short-rib thoracic dysplasia.

AIM: This study describes the clinical and genetic characteristics of Russian patients with STRD with or without polydac-
tyly caused by mutations in the genes DYNC2H1, DYNC2I2, IFT80, and IFT140.

MATERIALS AND METHODS: A comprehensive examination of 10 unrelated children aged from 9 days to 9 years, with 
phenotypic signs of short-rib thoracic dysplasia with or without polydactyly, was conducted. The diagnosis was confirmed 
using genealogical analysis, clinical examination, neurological examination, radiography, and targeted sequencing of a panel 
consisting of 166 genes responsible for the development of inherited skeletal pathology.

RESULTS: As a result of the molecular genetic analysis, four short-rib thoracic dysplasia genetic variants were identi-
fied. Seven patients were diagnosed with short-rib thoracic dysplasia type 3, and three unique patients were diagnosed with 
types 11, 2, and 9 due to mutations in the DYNC2H1 and DYNC2I2, IFT80, and IFT140 genes, respectively. From the 14 detected 
variants, six were identified for the first time. As in the previously described patient samples, in the analyzed sample, more 
than half of the cases were due to a mutation in the DYNC2H1 gene, which is responsible for the SRTD type 3. The differences 
in the severity of clinical manifestations and the disease course in patients with mutations in certain regions of the gene, 
which have a different effect on its protein product function, have been shown.

CONCLUSIONS: The results of this molecular genetic study broaden the spectrum of mutations in the DYNC2H1, DYNC212, 
and IFT140 genes causing short-rib thoracic dysplasia and confirm the usefulness of the whole-exome sequencing as the 
most informative method for identifying mutations of the genetically heterogeneous short-rib thoracic dysplasia group.
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Обоснование. Цилиопатии — большая группа наследственных заболеваний, обусловленных мутациями в генах, 
кодирующих различные компоненты первичных ресничек. Наиболее многочисленную группу скелетных цилиопатий 
составляют торакальные дисплазии с короткими ребрами.

Цель — описание клинико-генетических характеристик российских больных торакальными дисплазиями с корот-
кими ребрами с или без полидактилии, обусловленными мутациями в генах DYNC2H1, DYNC2I2, IFT80, IFT140. 

Материалы и методы. Проведено комплексное обследование 10 детей из неродственных семей в возрасте от 9 сут 
жизни до 9 лет с фенотипическими признаками торакальной дисплазии с короткими ребрами с или без полидактилии. 
Для уточнения диагноза использовали генеалогический анализ, клиническое обследование, неврологический осмотр 
по стандартной методике с оценкой психоэмоциональной сферы, рентгенографию и таргетное секвенирование панели, 
состоящей из 166 генов, ответственных за развитие наследственной скелетной патологии. 

Результаты. В результате молекулярно-генетического анализа у наблюдаемых больных выявлено четыре гене-
тических варианта торакальной дисплазии с короткими ребрами. У семерых больных диагностирована торакальная 
дисплазия с короткими ребрами 3-го типа, по одному больному — дисплазии 11, 2 и 9-го типа, обусловленные мута-
циями в генах DYNC2H1, DYNC2I2, IFT80 и IFT140 соответственно. Из 14 нуклеотидных замен шесть обнаружены впер-
вые. Как и в ранее описанных выборках, у большинства анализируемых пациентов заболевание обусловлено мутацией 
в гене DYNC2H1, ответственном за возникновение торакальной дисплазии с короткими ребрами 3-го типа. Существуют 
различия в тяжести клинических проявлений и течении заболевания у больных с мутациями в отдельных участках гена, 
оказывающих различное влияние на функцию его белкового продукта. 

Заключение. Результаты молекулярно-генетического исследования расширяют спектр мутаций в генах DYNC2H1, 
DYNC212, IFT140, обусловливающих развитие торакальной дисплазии с короткими ребрами 3, 11 и 9-го типов и под-
тверждают использование секвенирования экзома как основного метода идентификации мутаций генетически гетеро-
генной группы торакальных дисплазий с короткими ребрами. 
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BACKGROUND
Ciliopathies represent a large group of hereditary diseases 

caused by mutations in genes encoding various components 
of primary cilia, which are apical outgrowths of the basement 
membrane of cells containing microtubules [1, 2]. The main 
function of the cilia is to perceive various extracellular sig-
nals through surface receptors and transmit them to the cell 
nucleus. The cilia play a key role in the embryonic and post-
natal development of various organs, including the formation 
of the skeleton, providing endochondral ossification [3, 4]. 
The classification of skeletal ciliopathies has been revised 
many times. Currently, three groups of skeletal ciliopathies can 
be distinguished, namely, short-rib thoracic dysplasia (SRTD) 
with or without polydactyly, Ellis–van Creveld syndrome, 
and Sensenbrenner’s cranioectodermal dysplasia. The most 
numerous group of skeletal ciliopathies is represented by 
SRTDs. They were first described by Jeune et al. in 1955, and 
for a long time, the disease was called asphyxic thoracic Jeune 
dystrophy [5]. However, to date, 20 genetic variants of SRTD 
with an autosomal recessive type of inheritance have been 
detected, and 19 genes responsible for their occurrence have 
been identified [6]. The protein products of these genes are 
mainly involved in the anterograde and retrograde transport of 
various substrates along cilia microtubules [2–4]. Typical clini-
cal manifestations of SRTD are represented by a bell-shaped 
deformity of the chest, leading to respiratory disorders, and 
rhizomelic shortening of the limbs and brachydactylia. Some 
patients have polydactyly and damage to the kidneys, liver, 
eye, heart, and brain [2, 4, 7]. Significant mortality is due 
to cardiorespiratory failure that develops following chest 
constriction and progressive damage to the kidneys and 
liver [7]. In 20%–60% of patients with various genetic vari-
ants of SRTD, a lethal outcome is registered in the neonatal 
period [1]. The main radiological sign of the disease is chest 
hypoplasia caused by rib shortening and formation of the so-
called trident in the region of the acetabulum of the ilium [8].

Specific clinical signs suggest SRTD on clinical examina-
tion. However, the variability of the clinical manifestations 
and severity of the disease course in genetic variants neces-
sitate the study of their clinical aspects, which is important 
for predicting the severity of the disease course and planning 
the therapeutic and preventive measures.

The study aimed to analyze the clinical and genetic 
characteristics of Russian patients with SRTD with or without 
polydactyly, caused by DYNC2H1, DYNC2I2, IFT80, and IFT140 
mutations.

MATERIALS AND METHODS
A comprehensive examination of 10 children from 

unrelated families, aged 9 days to 9 years, with phenotypic 
signs of SRTD with or without polydactyly was conducted. 

To clarify the diagnosis, we conducted genealogical 
analysis, clinical examination, and neurological examination 
according to the standard method with an assessment of 
the psycho-emotional sphere, radiography, and targeted 
sequencing of a panel consisting of 166 genes responsible 
for the development of hereditary skeletal pathology.

Genomic DNA was isolated from whole blood using 
the DNAEasy kit (QiaGen, Germany) according to the manu-
facturer’s standard protocol. The concentration of DNA and 
libraries was measured on a qubit2.0 device using reagents 
(qubit BR and qubit HS) following the manufacturer’s stan-
dard protocol. For sample preparation, a technique based on 
the multiplex polymerase chain reaction of target DNA re-
gions was used. Next-generation sequencing was performed 
on an Ion Torrent S5 sequencer with an average coverage 
of at least ×80 and number of target areas with coverage 
of 90%–94% or more. For the annotation of the identified 
variants, the nomenclature presented on http://varnomen.
hgvs.org/recommendations/DNA (version 2.15.11) was used. 
Sequencing data were processed according to the Ion Torrent 
standard automated algorithm.

To assess the population frequencies of the identified 
variants, the samples of the 1000 Genomes, ESP6500, 
and Genome Aggregation Database v2.1.1 were used, and 
to assess the clinical significance, the OMIM database and 
the HGMD® Professional pathogenic variants database 
(version 2021.3) were used. The pathogenicity and causes 
of the genetic variants were analyzed in accordance with 
international recommendations for the interpretation of data 
obtained by massive parallel sequencing [9].

Validation of the variants identified in probands and 
genotyping of siblings and parents were performed by di-
rect automatic Sanger sequencing in accordance with 
the manufacturer’s protocol on an ABIPrism 3500xl ap-
paratus (Applied Biosystems). Primer sequences were se-
lected according to the reference sequence of the target 
gene regions DYNC2H1 (NM_001080463), DYNC2I2 (WDR34) 
(NM_052844), IFT80 (NM_020800), and IFT140 (NM_014714).

RESULTS
Ten unrelated patients (5 boys and 5 girls) with clinical 

and radiological manifestations of SRTD with or without 
polydactyly were followed up. Two of the children had 
parents who were related by blood. In two more families, 
the anamnesis was aggravated by the death of the older 
child in the neonatal period and at age 10 months with 
clinical manifestations similar to those of the probands. 
In three families, the obstetric anamnesis was remarkable 
for spontaneous miscarriage or missed pregnancy at a term 
earlier than 12 weeks, and in one family, the pregnancy 
was terminated for medical reasons at week 24 because 
the fetus had signs of skeletal dysplasia. Only two children 
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(probands 3 and 4) were diagnosed with SRTD prenatally 
at weeks 24 and 32 of gestation, respectively. However, 
in 7 of 10 cases (70%), ultrasonography of the fetus in 
the second and third trimesters of pregnancy detected signs 
of shortening of the tubular bones of the extremities in 
some cases associated with a curvature of the femur and 
polyhydramnios.

As a result of molecular–genetic analysis, four genetic 
variants of SRTD were identified in our patients. Seven pa-
tients were diagnosed with type 3 SRTD, and one patient each 
was diagnosed with type 11, 2, and 9 dysplasia caused by 
DYNC2H1, DYNC2I2, IFT80, and IFT140 mutations, respective-
ly. Six of the 14 nucleotide substitutions were identified for 
the first time. The range of detected nucleotide substitutions 
is presented in Table 1.

The largest number of mutations (7 missense substitu-
tions, 3 nonsense mutations, and 1 splicing site mutation) 
was found in DYNC2H1 encoding the main motor sub-
unit of the dynein complex heavy chain and responsible 
for type 3 SRTD. Moreover, four variants of nucleotide 
substitutions were discovered for the first time. Interest-
ingly, in 4 of the 14 alleles of DYNC2H1, the c.9044A>G 
(p.Asp3015Gly) mutation described previously as pathogenic 

was found in the compound heterozygous state with other 
nucleotide substitutions, two of which were identified for 
the first time.

In one patient, a newly identified homozygous missense 
substitution c.1150G>C (p.Ala384Pro) was registered in 
DYNC2I2 encoding another subunit of the intermediate 
chain of the dynein complex, which enabled us to diagnose 
type 11 SRTD.

Two patients had SRTD types 2 and 9 caused by IFT80 
and IFT140 mutations, respectively, which protein products 
are involved in the formation of the cilia transport system. 
In IFT80, a homozygous mutation c.2101G>C (p.Ala701Pro) 
was identified, which was reported by Beales et al. in 2007, 
and a newly identified mutation c.1052G>T (p.Trp351Leu) in 
the homozygous state was revealed in IFT140 [10].

Characteristics of clinical manifestations of the studied 
patients are summarized in Table 2.

In all probands, chest narrowing and deformity of varying 
severities were common clinical manifestations (Fig. 1). 
The syndrome of respiratory disorders in the neonatal 
period developed in 3 of 10 probands (30%), which required 
prolonged respiratory support with continuous positive 
airway pressure (CPAP) for proband 3. Probands 6 and 9 were 

Table 1. Range of mutations in four genes in Russian patients with short-rib thoracic dysplasia

Proband SRTD Gene Nucleotide  
changes

Amino acid  
changes Exon

Variant 
described 

earlier

1 Type 3 DYNC2H1 c.5176C>T p.Arg1726Term 34 +

c.9044A>G p.Asp3015Gly 57 +

2 Type 3 DYNC2H1 c.7972G>C p.Gly2658Arg 49 –

c.9044A>G p.Asp3015Gly 57 +

3 Type 3 DYNC2H1 c.9044A>G p.Asp3015Gly 57 +

c.11341G>A p.Gly3781Arg 78 –

4 Type 3 DYNC2H1 c.9044A>G p.Asp3015Gly 57 +

c.9710-2A>G – 62* +

5 Type 3 DYNC2H1 c.3059T>G p. Leu1020Term 21 +

c.8457A>G p. Ile2819Met 53 +

6 Type 3 DYNC2H1 c.2T>C p. Met1? 1 –

c.6035C>T p.Ala2012Val 38 +

7 Type 3 DYNC2H1 c.1151C>T p.Ala384Val 8 +

с.4429A>T p.Lys1477Term 29 –

8 Type 11 DYNC2I2 c.1150G>C
homozygote

p. Ala384Pro 7 –

9 Type 2 IFT80 c.2101G>C
homozygote

p.Ala701Pro 19 +

10 Type 9 IFT140 c.1052G>T
homozygote

p.Trp351Leu 10 –

Note: SRTD, short-rib thoracic dysplasia. * 62 — intron.
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Table 2. Clinical characteristics of the studied patients

Indicator

Probands

1 2 3 4 5 6 7 8 9 10

SRTD

Type 3 Type 3 Type 3 Type 3 Type 3 Type 3 Type 3 Type 11 Type 2 Type 9

Age 3 years 1 year 3 years 8 months 3 months 9 days 9 years 1 year 9 months 4 months

Sex M F F M F M M F M F

Consanguinity – – – – – – – + + –

Prenatal ultra-sound signs + + + + + + – – – +

Neonatal respirato-ry 
distress syn-drome

– – + – – + – – + –

Recurrent respira-tory 
diseases

+ – – – – – + + + –

Height, SDS –0.9 –1.09 –1.59 –1.34 –0.13 0.01 0.80 –3.16 –2.61 0.10

Stenothorax + + + + + + + + + +

Limb shortening + + + + + + + + + +

Brachydactyly – – + – – – + + + +

Polydactyly – – + – – – – – – –

Acetabular trident + + + + + + n/a – + n/a

Pigmentary reti-nopathy – – – – – – – – – +

Renal insufficien-cy – – – – – – – – – +

Basal–occipital foramen 
stenosis

– – – – – – – – + –

Delayed psycho-motor 
develop-ment

– – + – – – – + + +

Note. SRTD, short-rib thoracic dysplasia; M, male; F, female; n/a, not available.

Fig. 1. Appearance of 10 patients with thoracic dysplasia

1

6

2

7

3

8

4

9

5

10



DOi: https://doi.org/10.17816/PTORS91116

48

  Ортопедия, травматология  
КлиничесКие исследОвания Том 10, № 1, 2022 и восстановительная хирургия детского возраста

transferred for artificial ventilation. However, proband 6 with 
hypoplasia of mild and severe cardiorespiratory disorders 
died on day 16 of life.

In four probands (1, 7, 8, and 9), respiratory disorders 
emerged on month 2 of life, which were associated with 
recurrent obstructive bronchitis and repeated pneumonia; 
therefore, both noninvasive and invasive lung ventilations 
were performed. Proband 7 underwent reconstructive 
surgery on the chest (decompressive thoracoplasty and 
osteosynthesis with titanium plates) because of persistent 

tachypnea at age of 5 years, after which the respiratory 
function improved.

The growth rate in most patients was within the middle 
and lower limits of normal (from −1.59 to 0.8 SD) without 
significant deficit, with the exception of probands 8 and 9 
with SRTD types 11 and 2 who had a postnatal decrease 
in growth rates of −3.16 and −2.61 SD, respectively. In all 
patients, a mildly pronounced limb shortening, mainly of 
the rhizomelic type, was noted. Brachydactylia of the hands 
during clinical examination was revealed in five patients, and 
in proband 3, it was associated with postaxial polydactyly of 
both hands and the left foot.

Pelvic radiographs in seven patients showed a typical 
acetabular trident formed by the median prominence and two 
lateral spurs. The X-ray presentation of the “trident” changed 
somewhat within the studied patients, but it was quite apparent 
to a certain degree. This radiological phenomenon is caused 
by the peculiarity of the ossification of the supra-acetabular 
region. As a result of the uneven nature of this process, 
three “teeth” are clearly visible on pelvic radiographs in direct 
projection, whereas the medial “tooth” is outlined by the inner 
cortical layer of the sciatic notch and the lower contour of 
the ossified part of the ilium. The lateral “tooth” is outlined 
by the external supra-acetabular contour of the ossified part 
of the ilium and the acetabular hood. The central “tooth” 
is outlined by the acetabular hood and the lower contour 
of the ossified part of the ilium (Fig. 2). The symptom was 
noted at birth and was more pronounced in infancy; later, 
the “teeth” were smoothed out as the cartilaginous elements 

Fig. 3. Chest and hip joint radiographs of 10 patients with thoracic dysplasia
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Fig. 2. Trident symptom on the radiograph of the left hip joint 
in a 3-month-old patient with thoracic dysplasia (highlighted 
in red)
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of the acetabulum ossified. Therefore, if SRTD is suspected 
in older children, a retrospective analysis of radiographs 
of the hip joints is necessary, which can help in identifying 
the characteristic radiological presentation and substantiate 
the clinical and radiological diagnoses for subsequent genetic 
examination.

All probands had a decrease in the transverse size of 
the chest and shortening and horizontal arrangement of 
the ribs. The chest was cylindrical or bell-shaped, and 
several patients had a thickening of the anterior ribs (Fig. 3). 
Proband 3 was diagnosed with congenital bilateral hip 
dislocation, which was treated conservatively with a positive 
effect.

Along with typical clinical manifestations, proband 10 
with a newly identified IFT140 homozygous mutation had 
extraskeletal manifestations of renal failure and pigmentary 
retinopathy and early psychomotor development delay. 
Patients with this combination of symptoms were first 
described by Mainzer and Saldino in 1970; therefore, this 
variant was Mainzer–Saldino syndrome) [11]. However, 
in the OMIM catalog, it is designated as SRTD type 9 with 
or without polydactyly. The parents of this proband do not 
indicate direct consanguinity; however, they are Ingush by 
nationality and live in a small territory of the republic with 
a population of 515 thousand people. Chest deformity and 
limb shortening were registered in the girl at birth, and at 
1 month of age, the absence of gaze fixation and roving eye 
movements became noticeable. During a hospital examination 
for obstructive bronchitis at age 3 months, X-ray signs of 
SRTD were noticed, and ultrasound examination revealed 
kidney cysts up to 0.2 cm in diameter and splenomegaly. 
In the urine tests over time, proteinuria up to 0.2 g/L was 
detected, and degree II bilateral medullary nephrocalcinosis, 
stage III chronic kidney disease, renal arterial hypertension, 
pigmentary retinopathy, and high degree hypermetropia of 
both eyes were diagnosed. At birth, low muscle tone and 
a psychomotor retardation were noted; the patient can sit 
independently from 1 year of age and can walk from the age 
of 2 years.

Proband 9 with type 2 SRTD caused by an IFT80 
homozygous mutation experienced severe respiratory failure 
and orthopedic complications from birth, including stenosis 
and compression of the cervical spine. In the boy with 
multiple lung atelectasis and an anomaly of the posterior 
arch of the C1 vertebra, computed tomography revealed 
narrowing of the spinal canal; and at the age of 6 months, 
decompression surgery of the craniovertebral junction and 
prolonged tracheostomy were required. The psychomotor 
development of the child proceeded with a gross delay 
against the severe diffuse muscular hypotension, and he 
could not hold his head, roll over, and sit.

Thus, we present an analysis of the clinical, genetic, 
and radiological characteristics of 10 Russian patients with 

types 2, 3, 9, and 11 of thoracic dysplasia with or without 
polydactyly caused by DYNC2H1, DYNC2I2, IFT80, and IFT140 
mutations. In seven patients, the disease arose as a result 
of homozygous and compound heterozygous mutations of 
DYNC2H1, six of which were recorded for the first time. It is 
assumed that there are differences in the severity of clini-
cal manifestations and the disease course in patients with 
mutations in certain regions of the gene that affect the func-
tion of certain protein domains. Clinical and genetic analysis 
showed that in patients with IFT80 and IFT140 mutations, 
skeletal damage was more severe and could be combined 
with the kidney and eye pathologies, stenosis of the basal–
occipital foramen, and delayed psychoverbal development.

DISCUSSION
SRTD with or without polydactyly represents a group 

of skeletal ciliopathy caused by impaired functioning of 
cilia, which play a significant role in endochondral bone 
formation and growth plate architectonics, in the regulation 
of the Hedgehog and Wnt signaling pathways necessary 
for the differentiation and proliferation of chondrocytes [4]. 
All proteins functioning in cilia are grouped into three 
main complexes. Complex 1 includes structural proteins of 
the basal body and the base of cilia, complex 2 includes motor 
proteins (dynein-2 and kinesin-2) that bind to transported 
substrates, and complex 3 consists of proteins that form 
the transport system of microtubules. Diseases of this 
group mainly arise following mutations in genes encoding 
the motor protein dynein or providing anterograde (from 
the cilial base to the tip) and retrograde (from the cilial tip 
to the base) transport along the microtubules of cilia, which 
is implemented using two complexes IFT-B and IFT-A [3]. 
The schematic structure of cilia and localization of the protein 
products of genes are presented in Fig. 4.

In 70% of the patients, SRTD was caused by a DYNC2H1 
mutation responsible for the occurrence of type 3 disease, 
which corresponds to data obtained by other authors, who 
registered mutations in this gene in 33%–61% of the patients 
[4, 7, 12]. DYNC2H1 consists of 90 exons and encodes 
the main subunit of the dynein complex, cytoplasmic dynein-2 
heavy chain 1, consisting of 4314 amino acids. Its domain 
structure includes an N-terminal region-1 (DHC_N1) and 
a linker region-2 (DHC_N2), six ATP-hydrolyzing domains, 
and a core and a C-terminal domains [4]. In seven patients, 
we identified 11 mutations, four of which were detected 
for the first time (Fig. 5). Four of the seven probands had 
the previously described mutation c.9044A>G (p.Asp3015Gly), 
which is quite common in patients with SRTD from European 
countries. Thus, in 2009, Dagoneau et al. revealed this 
mutation in patients from France, Schmidts et al. detected it 
in 2013 in patients from Holland, and Čechová et al. registered 
it in 2019 in a Czech patient [12–14]. In 2018, Zhang et al. 
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detected this mutation in five newborns of European origin 
with SRTD from the archive of the International Registry 
of Skeletal Dysplasia [4]. Functional analysis showed 
that Asp3015Gly substitution leads to the destruction of 
the hydrogen bond between two α-helices of the DYNC2H1 
protein, its conformational change, impairing the ability of 
the motor complex to attach to microtubules [13]. Although 
the missense mutation c.9044A>G (p.Asp3015Gly) was 
repeatedly identified in patients with SRTD, it was not 
registered in a homozygous state in any patient, including in 
our sample, which is presumably a genetically lethal variant 
incompatible with fetal development.

SRTD caused by DYNC2H1 mutations is characterized 
by varying severities, from mild to severe forms, leading to 
lethal outcome at an early age due to severe lung impairment. 
The severity of clinical manifestations may be associated with 
the different effects of mutations on dynein function. Thus, 
in proband 7, a 9-year-old boy with reconstructive surgery 
on the chest, p.Ala384Val and p.Lys1477Term mutations 
disrupt the function of the N-terminal domains of the heavy 
chain, which are involved in homodimerization and binding 
to auxiliary subunits of the dynein complex [15]. Mutation 1 
has been described in patients with perinatally lethal short-
rib syndrome with polydactyly, whereas mutation 2 was 
discovered by us for the first time [16–18]. In four probands 
(1, 3, 5, and 6) in one of the alleles, missense and nonsense 
mutations in the ATP-hydrolyzing domains were identified, 
and in one of these cases, with the p. Ala2012Val mutation, 

lethal outcome occurred in the neonatal period. It is 
assumed that the localization of amino acid substitutions 
in the AAA domains can prevent ATP hydrolysis with 
energy conversion for the movement of complexes along 
microtubules [19].

The viability of patients depended on respiratory compli-
cations, as they did not have extraskeletal manifestations of 
ciliopathies, which confirms the important genotype–pheno-
type correlation in the presence of DYNC2H1 mutations, but 
necessitates long-term follow-up because of the risk of their 
development at a later age [7, 12].

Type 11 SRTD, caused by DYNC2I2 mutations, is the sec-
ond most common in this group of diseases, accounting for 
10% of all cases described in the literature [20]. However, in 
our sample, a DYNC2I2 mutation was revealed in only one 
patient. DYNC2I2 encodes a protein of 536 amino acids, which 
is a member of the protein family with WD repeats and con-
tains five WD40 domains (repeats of 40 amino acids) that 
promote the formation of heterotrimeric multiprotein com-
plexes [21]. The protein product of the gene is an intermediate 
chain of the dynein motor complex, which main function is to 
recognize and bind transported substrates.

In 2013, Huber et al. first identified DYNC2I2 mutations, 
after which it became known that most patients with this type 
did not survive after the neonatal period because of severe 
respiratory disorders [21]. Proband 8, a girl aged 1 year 
4 months, whose parents were each other’s second cousins, 
had a new mutation in the homozygous state in exon 7 of 

Fig. 4. Diagram of the cilium structure
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DYNC2I2, c.1150G>C (p.Ala384Pro). The child was born from 
the second pregnancy, and her mother’s first pregnancy 
was terminated at week 24 because the fetus had signs 
of skeletal dysplasia. The disease course in the proband 
was significantly severe because of worsening respiratory 
disorders caused by pneumonia and lung hypoplasia, for 
which the child was repeatedly hospitalized in the intensive 
care unit. Despite ongoing therapy, the child died at age 
2 years 8 months. The p.Ala384Pro missense substitution 
in DYNC2I2 in the proband changes the amino acid sequence 
of WD40 repeats, which, according to Li and Roberts, can 
disrupt protein–protein interactions mediated by these 
repeats and binding of protein “loads” [22] (Fig. 5).

ITF80 mutations cause a rare SRTD variant with or 
without type 2 polydactyly. Mutations in this gene were first 
identified by Beales et al. in 2007 in three consanguineous 
families [10]. Currently, 16 ITF80 mutations are known [23]. 
ITF80 encodes a 777-amino acid protein that is a component 
of the IFT-B anterograde transport complex. The homozygous 
mutation c.2101G>C (p.Ala701Pro) that were have found in 
proband 9 was described by Beales et al. in 2007 in two 
siblings in a consanguineous Pakistani family [10] (Fig. 5). 
The parents of proband 9 were also related by blood; their 

history includes a case of neonatal death in a sibling of 
the proband with similar symptoms. The boy was diagnosed 
with a syndrome of respiratory disorders at birth, for which 
he received artificial lung ventilation for 20 days, followed 
by respiratory support with CPAP, and at age 6 months, he 
underwent urgent surgery because of a pronounced stenosis 
of the basal–occipital foramen with cervico-medullary 
compression, followed by an increase in respiratory failure 
and imposition of a tracheostomy. A similar complication 
in the form of atlanto-axial instability with spinal cord 
compression was noted by Tüysüz et al. in 2009 in a 4.5-year-
old Turkish girl with a homozygous mutation p. H105Q in 
ITF80, which has not been previously reported in SRTD [24]. 
These data may jointly indicate the peculiarities of the course 
of type 2 SRTD.

IFT140 mutations cause another rare SRTD type 9, previ-
ously described as Mainzer–Saldino syndrome or conorenal 
syndrome, due to a characteristic radiographic finding in 
the form of cone-shaped epiphyses of the metacarpal bones 
and phalanges after the first year of life [11, 25]. In addition 
to signs of thoracic dysplasia, patients with this type have 
pronounced extraskeletal manifestations of chronic renal 
failure and severe pigmentary retinopathy that occur in early 

Fig. 5. Localization of amino acid substitutions in the domains of DYNC2H1, DYNC2I2, IFT80, IFT140 proteins in Russian patients with 
short-rib thoracic dysplasia
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childhood. Several patients also have short stature, cerebel-
lar ataxia, and hepatic fibrosis.

IFT140 consists of 31 exons and encodes a 1462-amino 
acid protein containing five WD40 repeats and nine 
tetratricopeptide repeats (TPR), which provide protein–
protein interactions and are involved in the retrograde 
transport complex IFT-A of cilia [26]. Proband 10 had 
a previously undescribed homozygous mutation in exon 10 
c.1052G>T (p.Trp351Leu), which disrupts the functions of 
WD repeats (Fig. 5). Severe retinal dystrophy after birth was 
the initial manifestation of this SRTD type, and skeletal signs 
of thoracic dysplasia and symptoms of renal failure were 
revealed in the girl later with recurrent respiratory diseases. 
Symptoms of an early degenerative retinal lesion at the initial 
disease stage became the reason for the suspicion of Leber’s 
congenital amaurosis in the proband. Although in rare cases, 
retinitis pigmentosa type 80 may be an isolated allelic variant 
of this disease group caused by IFT140 mutations. All known 
cases of type 9 SRTD were accompanied by typical skeletal 
features and the development of end-stage renal failure in 
children in the first decade of life [26, 27].

CONCLUSION
Clinical genetic analysis was performed in 10 patients 

with four genetic variants of skeletal ciliopathies (SRTD). 
Six newly identified nucleotide substitutions were identified, 
and the mechanism of their influence on the functions of 
the protein product was discussed. As in the previously 
described patients, in the sample analyzed, more than half of 
the cases were caused by a DYNC2H1 mutation that caused 
type 3 SRTD. The main clinical and radiological manifestations 
of this variant are characterized by a bell-shaped deformity of 
the chest with short ribs, resulting in respiratory disorders, 
limb shortening, and brachydactylia, the presence of the so-
called trident in the iliac acetabulum. The differences in 
the severity of clinical manifestations and disease course 

in patients with mutations in certain regions of the gene, 
which have a different effect on the function of its protein 
product, have been revealed. Stenosis of the basal–occipital 
foramen was noted in patients with type 2 SRTD caused by 
IFT80 mutations. The multiple-organ damage in patients with 
type 9 SRTD due to IFT140 mutations, whose symptoms of 
skeletal dysplasia were combined with kidney, retina, liver, 
and brain pathologies, has been confirmed. The results of 
the molecular–genetic study expand the range of mutations in 
DYNC2H1, DYNC212, and IFT140 that cause SRTD types 3, 11, 
and 9 and confirm the importance of exome sequencing as 
the main method for identifying mutations in the genetically 
heterogeneous SRTD group.
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