对青少年运动员对侧下肢足底压力中心波动的幅频特性评估
- 作者: Nikityuk I.E.1
-
隶属关系:
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
- 期: 卷 13, 编号 2 (2025)
- 页面: 172-181
- 栏目: New technologies in trauma and orthopedic surgery
- ##submission.dateSubmitted##: 24.03.2025
- ##submission.dateAccepted##: 25.04.2025
- ##submission.datePublished##: 10.07.2025
- URL: https://journals.eco-vector.com/turner/article/view/677678
- DOI: https://doi.org/10.17816/PTORS677678
- EDN: https://elibrary.ru/MHSEKV
- ID: 677678
如何引用文章
详细
论证。当前,开发用于功能性评估参与体育锻炼儿童机体适应性变化的仪器诊断方法具有现实意义。
目的:分析青少年运动员在直立姿势下,不同频率范围内对侧下肢足底压力中心波动的幅值特性。
材料与方法。对18名年龄为7—10岁、规律参加田径训练的男女儿童在直立姿势下的足底压力中心波动的幅频特性进行了分析。采用两块稳定测量平台,分别记录左右下肢足底压力中心在低频范围(≤1.0 Hz,记录20秒)和高频范围(1.0–6.0 Hz,记录1秒)内的波动参数。测定下肢波动轴与身体中轴线之间的偏移角α(°)。在低频范围内测量足底压力中心波动的首个最大幅度和频率: а1、а2、а3(mm)和f1、f2、f3(Hz);在高频范围内测量А1、А2、А3(mm)和F1、F2、F3(Hz)。对照组为18名身体活动水平处于一般日常水平的同龄儿童。
结果。与未参加体育锻炼、生活方式相对静态的同龄儿童相比,儿童运动员在低频和高频频段的足底压力中心波动幅频特性表现更为理想。具体表现为波动频率的偏移、低频和高频范围内所有峰值幅度的减小、波动幅度不对称性的降低,以及整个频谱范围内足底压力中心波动同步性的稳定性更高。
结论。在小学年龄段儿童的体育训练中,应考虑对侧下肢足底压力中心波动的幅频特性,以防止因疲劳引发的神经肌肉失衡,从而降低损伤风险。
全文:

作者简介
Igor E. Nikityuk
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
编辑信件的主要联系方式.
Email: femtotech@mail.ru
ORCID iD: 0000-0001-5546-2729
SPIN 代码: 5901-2048
MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint Petersburg
参考
- Sember V, Jurak G, Kovac M, et al. Decline of physical activity in early adolescence: A 3-year cohort study. PLoS ONE. 2020;15(3):e0229305. doi: 10.1371/journal.pone.0229305 EDN: ZSLCBU
- Gorelik VV, Filippova SN. The New physical education at school: correctional and health-improving usage of students’ physiological indexes as markers of physical development and health disorders. Hum Sport Med. 2019;19(1):42–49. doi: 10.14529/hsm190106 EDN: PYMFSJ
- Walters BK, Read CR, Estes AR. The effects of resistance training, overtraining, and early specialization on youth athlete injury and development. J Sports Med Phys Fitness. 2018;58(9):1339–1348. doi: 10.23736/S0022-4707.17.07409-6
- Brenner JS, Watson A. Overuse injuries, overtraining, and burnout in young athletes. Pediatrics. 2024;153(2):e2023065129. doi: 10.1542/peds.2023-065129 EDN: WASQVV
- Maestroni L, Read P, Bishop C, et al. The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care. Sport Med. 2020;50(8):1431–1450. doi: 10.1007/s40279-020-01309-5 EDN: NAMDRW
- Pozdnikin IYu, Bortulev PI, Barsukov DB. Idiopathic aseptic necrosis of the femoral head in children who are professionally engaged in gymnastics: a literature review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(1):127–137. doi: 10.17816/PTORS625549 EDN: LGBZUW
- Kozlovsky IV, Koinosov AP. Age dynamics of physiological and biomechanical components of the formation of statodynamic and postural function in children of the second period of childhood: literature review. Scientific medical bulletin of Yugra. 2022;31(1):12–22. doi: 10.25017/2306-1367-2022-31-1-12-22 EDN: UHIAQL
- Minamisawa T, Chiba N, Suzuki E. Association of bilateral lower limb coordination while standing with body sway control and aging. Somatosens Mot Res. 2021;38(4):294–302. doi: 10.1080/08990220.2021.1973402 EDN: LVWAYY
- Sedochenko SV, Savinkova ON, Popova IE. Bilateral force-plate measurements in skilled high divers. Human. Sport. Medicine. 2022;22(S1):23–27. doi: 10.14529/hsm22s104 EDN: PEXFZQ
- Nikityuk IE, Savina MV. A two-platform method for assessing the stability of the vertical balance of the body in young children engaged in sports. Modern problems of science and education. 2024;1:11. doi: 10.17513/spno.33248 EDN: WZMAMH
- Zhiltsova II, Alzhev NV, Annenkov OA, et al. Influence of psychoemotional stress on postural stability according to the parameters of the statokinesiogram spectrum and heart rate variability. Military Medical Journal. 2018;339(6):61–69. EDN: XYPOBN
- Golomer E, Dupui P, Bessou P. Spectral frequency analysis of dynamic balance in healthy and injured athletes. Arch Int Physiol Biochim Biophys. 1994;102(3):225–229. doi: 10.3109/13813459409007543 EDN: XXTDMA
- Golomer E, Dupui P. Spectral analysis of adult dancers’ sways: sex and interaction vision-proprioception. Int J Neurosci. 2000;105(1–4):15–26. doi: 10.3109/00207450009003262 EDN: CSMHUI
- Fischer OM, Missen KJ, Tokuno CD, et al. Postural threat increases sample entropy of postural control. Front Neurol. 2023;14:1179237. doi: 10.3389/fneur.2023.1179237 EDN: DCSLFQ
- Gilfriche P, Deschodt-Arsac V, Blons E, et al. Frequency-specific fractal analysis of postural control accounts for control strategies. Front Physiol. 2018;9:293. doi: 10.3389/fphys.2018.00293
- Daunoraviciene K, Ziziene J, Pauk J, et al. EMG based analysis of gait symmetry in healthy children. Sensors. 2021;21(17):5983. doi: 10.3390/s21175983 EDN: GHHEZW
- Zemková E, Kováčiková Z. Sport-specific training induced adaptations in postural control and their relationship with athletic performance. Front Hum Neurosci. 2023:16:1007804. doi: 10.3389/fnhum.2022.1007804 EDN: NPSMYC
- Tsay JS, Kim HE, Parvin DE, et al. Individual differences in proprioception predict the extent of implicit sensorimotor adaptation. J Neurophysiol. 2021;125(4):1307–1321. doi: 10.1152/jn.00585.2020 EDN: EZMXLF
- Lhomond O, Juan B, Fornerone T, et al. Learned overweight internal model can be activated to maintain equilibrium when tactile cues are uncertain: evidence from cortical and behavioral approaches. Front Hum Neurosci. 2021;15:635611. doi: 10.3389/fnhum.2021.635611 EDN: TWBVXP
- Forestier N, Terrier R, Teasdale N. Ankle muscular proprioceptive signals’ relevance for balance control on various support surfaces: an exploratory study. Am J Phys Med Rehabil. 2015;94(1):20–27. doi: 10.1097/PHM.0000000000000137 EDN: UVDJVZ
- Sozzi S, Schieppati M. Balance adaptation while standing on a compliant base depends on the current sensory condition in healthy young adults. Front Hub Neurosci. 2022;16:839799. doi: 10.3389/fpsyg.2022.839799
- Ue S, Nakahama K, Hayashi J, et al. Cortical activity associated with the maintenance of balance during unstable stances. Peer J. 2024;12:e17313. doi: 10.7717/peerj.17313 EDN: MYNDEO
- Nikityuk IE. Differentiated stabilometric analysis of vertical posture regulation in non-sports children and its comparative assessment with young athletes. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2025;13(1):49–61. doi: 10.17816/PTORS642714
- Izovska J, Mikic M, Dragijsky M, et al. Pre-season bilateral strength asymmetries of professional soccer players and relationship with non-contact injury of lower limb in the season. Sport Mont. 2019;17(2):107–110. doi: 10.26773/smj.190619
- Khudik SS, Chikurov AI, Voynich AL, et al. Functional asymmetry as a biological phenomenon associated with athletic performance. Tomsk State University Journal. 2017;421:193–202. doi: 10.17223/15617793/421/29 EDN: ZHYYMR
- Theodorou E, Grivas TB, Hadjicharalambous M. The influence of the dominant leg in body asymmetries in children and adolescent male soccer players. Pediatr Rep. 2024;16(3):684–695. doi: 10.3390/pediatric16030058 EDN: ZWWKLC
- Parpa K, Michaelides M. Relationship of pre-season strength asymmetries, flexibility and aerobic capacity with in-season lower body injuries in soccer players. Sport Mont. 2022;20(2):69–74. doi: 10.26773/smj.220611
- Fort-Vanmeirhaeghe A, Bishop C, Montalvo AM, et al. Effects of exercise-induced neuromuscular fatigue on jump performance and lower-limb asymmetries in youth female team sport athletes. J Hum Kinet. 2023;89:19–31. doi: 10.5114/jhk/174073 EDN: ILTVZR
- Ayteev MA, Rubanovich VB. Coordination training in 7-9-year-old judoists. Human. Sport. Medicine. 2023;23(3):142–149. doi: 10.14529/hsm230319 EDN: XDKYVW
- Rakhra SK, Singer JC. The effect of ageing on between-limb centre of pressure coordination in standing balance: is there evidence for reactive control challenges among older adults? Hum Mov Sci. 2022;86:103019. doi: 10.1016/j.humov.2022.103019 EDN: OBPRIH
- Guthold R, Stevens GA, Riley LM, et al. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc Health. 2020;4(1):23-35. doi: 10.1016/S2352-4642(19)30323-2 EDN: HPCYED
- Nikityuk IE, Botsarova SA, Semenov MG, et al. Violation of the postural balance of the trunk in adolescents with mesial ratio of dentition before and after surgical treatment in the presence and absence of congenital cervical spine abnormalities. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(4):473–486. doi: 10.17816/PTORS606640 EDN: FOTKBC
- Strosser S. Youth sport specialization and risk of injury: a general review. Clin J Sport Med. 2023;33(6):652–657. doi: 10.1097/JSM.0000000000001157 EDN: VKWBKU
补充文件
附件文件
动作
1.
JATS XML
2.
Fig. 1. Examples of decomposition of the vectors of the resulting velocities V of the pressure centers of the feet of the lower extremities (LE) into the sagittal VY and frontal VX components in an 8-year-old child athlete: a — registration time 20 s; b — registration time 1 s. An increase in VX and a decrease in VY with an increase in the angle α of deviation of V from the midline were determined.
下载 (391KB)
3.
Fig. 2. Example of graphical display of spectral characteristics of oscillations of the pressure centers of the foot of the right lower limb of 9-year-old children in the low-frequency range in the sagittal plane: a - child athlete; b - child not involved in sports; a1, a2 and a3 - the first, second and third maximum amplitudes. The child athlete has lower amplitudes a2 and a3.
下载 (246KB)
4.
Fig. 3. Example of graphic display of spectral characteristics of oscillations of the pressure centers of the foot of the right lower limb of 9-year-old children in the low-frequency range in the frontal plane: a - child athlete; b - child not involved in sports; a1, a2 and a3 - the first, second and third maximum amplitudes. The child athlete has lower amplitude values.
下载 (302KB)
5.
Fig. 4. Example of graphical display of spectral characteristics of oscillations of the pressure centers of the feet of the contralateral lower limbs of a 7-year-old child athlete in the high-frequency range in the frontal plane: a - left lower limb; b - right lower limb; A1, A2 and A3 - the first, second and third maximum amplitudes. The left lower limb has higher amplitudes.
下载 (284KB)
