Prospects of hydroxyapatite-based nanomaterials application synthesized by layer-by-layer method for pediatric traumatology and orthopedics

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The present brief review focuses on the features of the Layer-by-Layer (LbL) synthesis of coatings containing hydroxyapatite nanoparticles and assesses their use in solving several biomedical problems. This work provides the state-of-art of this field. This method is based on the sequential chemical adsorption of reagents on the substrate surface that makes it possible to apply nanolayers of the specified composition on the surface of a wide range of substrates of complex shape, to control the thickness of the synthesized layers accurately at the nanometer level. It also enables the modification of surface characteristics, including roughness, hydrophilicity, and surface charge, and allows “artificially” constructed multilayers consisting of hybrid organic and inorganic substances to be obtained. The experimental material presented in the review demonstrates the effectiveness of LbL synthesis for creating new 3D scaffolds as bone substitutes, coatings on the surface of metal implants, and drug delivery systems. A promising direction for the development of LbL synthesis is the creation of methods that involve ion-substituted hydroxyapatites as reagents. Success in this area can pave the way for significant advances in biomedicine and open new opportunities for creating a new generation of structures that mimic the structural, compositional, and mechanical properties of the bone mineral phase.

Full Text

Restricted Access

About the authors

Aleksandra A. Meleshko

Institute of Chemistry St. Petersburg State University

Author for correspondence.
Email: alya_him@mail.ru
ORCID iD: 0000-0002-7010-5209

PhD in Technical Sciences, Researcher

Russian Federation, 198504, St. Petersburg, Petergof, Universitetskii prospect 26

Valeri P. Tolstoy

Institute of Chemistry St. Petersburg State University

Email: v.tolstoy@spbu.ru
ORCID iD: 0000-0003-3857-7238

D.Sc. in Chemistry, senior researcher, Professor

Russian Federation, 198504, St. Petersburg, Petergof, Universitetskii prospect 26

Gennady E. Afinogenov

Saint Petersburg State University

Email: gennady-afinogenov@yandex.ru
ORCID iD: 0000-0003-1273-7651

MD, PhD, D.Sc., Professor, Professor of the Department of Oral and Maxillofacial Surgery and Surgical Dentistry

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Aleksandra S. Levshakova

Institute of Chemistry, Saint Petersburg State University

Email: sashkeens@gmail.com
ORCID iD: 0000-0001-8164-5174

graduate student

Russian Federation, 198504, St. Petersburg, Petergof, Universitetskii prospect 26

Anna G. Afinogenova

Saint Petersburg State University; Saint Petersburg Pasteur Research Institute of Epidemiology and Mictobiology

Email: spbtestcenter@mail.ru
ORCID iD: 0000-0001-8175-0708

Professor of the Department of Oral and Maxillofacial Surgery and Surgical Dentistry; D.Sc. in Biology, Senior Research Associate

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034; 14, Mira street, Saint Petersburg, 197101

Vladislav P. Muldiyarov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: Muldiyarov@inbox.ru
ORCID iD: 0000-0002-3988-7193

MD, Clinical Resident

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Sergei V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048

MD, PhD, D.Sc., Professor, Corresponding Member of RAS, Deputy Director for Research and Academic Affairs, Head of the Department of Spinal Pathology and Neurosurgery

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Stanislav A. Linnik

North-Western State Medical University named after I.I. Mechnikov

Email: stanislavlinnik@mail.ru
ORCID iD: 0000-0002-4840-6662

MD, PhD, D.Sc., Professor, Professor of the Department of traumatology and orthopedics

Russian Federation, 41, Kirochnaya street, Saint-Petersburg, 191015

References

  1. Al Bejinaru Mihoc, Mitu L. Characteristics of hydroxyapatite: a review. In: Proceedings of the 7th International conference on computational mechanics and virtual engineering COMEC; Brasov, Romania, 16-17 Nov 2017. 2017. P. 144-147.
  2. Basirun WJ, Nasiri-Tabrizi B, Baradaran S. Overview of hydroxyapatite–graphene nanoplatelets composite as bone graft substitute: mechanical behavior and in-vitro biofunctionality. Critical Reviews in Solid State and Materials Sciences. 2017;43(3):177-212. https://doi.org/10.1080/10408436.2017.1333951.
  3. Tite T, Popa AC, Balescu LM, et al. Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials (Basel). 2018;11(11). https://doi.org/10.3390/ma11112081.
  4. Дроздецкий А.П., Овсянкин А.В., Кузьминова Е.С., и др. Собственный опыт применения костнопластических материалов при хирургическом лечении костных кист у детей // Вестник Смоленской государственной медицинской академии. – 2019. – Т. 18. – № 3. – С. 74–82. [Drozdetskiy AP, Ovsyankin AV, Kuzminova ES, et al. Our experience of the use of osteoplastic materials in the surgical treatment of bone cysts in children. Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii. 2019;18(3):74-82. (In Russ.)]
  5. Gotz W, Tobiasch E, Witzleben S, Schulze M. Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics. 2019;11(3). https://doi.org/10.3390/pharmaceutics11030117.
  6. Фохтин В.В., Кузнечихин Е.П., Кузин А.С., Махров Л.А. Костная гетеропластика у детей биосовместимым материалом // Российский вестник детской хирургии, анестезиологии и реаниматологии. – 2014. – Т. 14. – № 4. – С. 58–63. [Fokhtin VV, Kuznechikhin EP, Kuzin AS, Makhrov LA. Osseous heteroplasty with biocompatible materials in children. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2014;4(4):58-63. (In Russ.)]
  7. Gomes DS, Santos AMC, Neves GA, Menezes RR. A brief review on hydroxyapatite production and use in biomedicine. Cerâmica. 2019;65(374):282-302. https://doi.org/10.1590/0366-69132019653742706.
  8. Panchali B, Anam M, Jahirul M, et al. Nanoparticles and their Applications in Orthodontics. Adv Dent Oral Health. 2016;2(2):555-584.
  9. Krishnamurithy G. A review on hydroxyapatite — based scaffolds as a potential bone graft substitute for bone tissue engineering applications. Journal of Health and Translational Medicine. 2013;16(2):22-27.
  10. Wu D, Chen X, Chen T, et al. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials. Sci Rep. 2015;5:11105. https://doi.org/10.1038/srep11105.
  11. Ilie A, Andronescu E, Ficai D, et al. New approaches in layer by layer synthesis of collagen/hydroxyapatite composite materials. Central European Journal of Chemistry. 2011;9(2):283-289. https://doi.org/10.2478/s11532-011-0002-1.
  12. Ji M, Li H, Guo H, et al. A novel porous aspirin-loaded (GO/CTS-HA) n nanocomposite films: Synthesis and multifunction for bone tissue engineering. Carbohydr Polym. 2016;153:124-132. https://doi.org/10.1016/ j.carbpol.2016.07.078.
  13. Harun WSW, Asri RIM, Alias J, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram Int. 2018;44(2):1250-1268. https://doi.org/10.1016/j.ceramint.2017.10.162.
  14. Jo Y-Y, Oh J-H. New resorbable membrane materials for guided bone regeneration. Appl Sci. 2018;8(11):2157. https://doi.org/10.3390/app8112157.
  15. Aletaha M, Salour H, Yadegary S, et al. Orbital volume augmentation with calcium hydroxyapatite filler in anophthalmic enophthalmos. J Ophthalmic Vis Res. 2017;12(4):397-401. https://doi.org/10.4103/jovr.jovr_201_16.
  16. Zhu X, Shi J, Ma H, et al. Hierarchical hydroxyapatite/polyelectrolyte microcapsules capped with AuNRs for remotely triggered drug delivery. Mater Sci Eng C Mater Biol Appl. 2019;99:1236-1245. https://doi.org/10.1016/j.msec.2019.02.078.
  17. Turon P, del Valle L, Alemán C, Puiggalí J. Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles. Appl Sci. 2017;7(1):60. https://doi.org/10.3390/app7010060.
  18. Wang J, Wang H, Wang Y, et al. Alternate layer-by-layer assembly of graphene oxide nanosheets and fibrinogen nanofibers on a silicon substrate for a biomimetic three-dimensional hydroxyapatite scaffold. J Mater Chem B. 2014;2(42):7360-7368. https://doi.org/10.1039/c4tb01324g.
  19. Manoukian OS, Aravamudhan A, Lee P, et al. Spiral layer-by-layer micro-nanostructured scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2018;4(6):2181-2192. https://doi.org/10.1021/acsbiomaterials.8b00393.
  20. Jin K, Ye X, Li S, et al. A biomimetic collagen/heparin multi-layered porous hydroxyapatite orbital implant for in vivo vascularization studies on the chicken chorioallantoic membrane. Graefes Arch Clin Exp Ophthalmol. 2016;254(1):83-89. https://doi.org/10.1007/s00417-015-3144-6.
  21. Chen S, Shi Y, Luo Y, Ma J. Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery. Colloids Surf B Biointerfaces. 2019;179:121-127. https://doi.org/10.1016/j.colsurfb.2019.03.063.
  22. Houdali A, Behary N, Hornez J-C, et al. Immobilizing hydroxyapatite microparticles on poly(lactic acid) nonwoven scaffolds using layer-by-layer deposition. Text Res J. 2016;87(16):2028-2038. https://doi.org/10.1177/0040517516663154.
  23. Виссарионов С.В., Асадулаев М.С., Шабунин А.С., и др. Экспериментальная оценка эффективности хитозановых матриц в условиях моделирования костного дефекта in vivo // Ортопедия, травматология и восстановительная хирургия детского возраста. – 2020. – Т. 8. – № 1. – С. 53–62. [Vissarionov SV, Asadulaev MS, Shabunin AS, et al. Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message). Pediatric traumatology, orthopaedics and reconstructive surgery. 2020;8(1):53-62. (In Russ.)]. https://doi.org/10.17816/PTORS16480.
  24. Tolstoy VP, Kodintsev IA, Reshanova KS, Lobinsky AA. A brief review of metal oxide (hydroxide)-graphene nanocomposites synthesis by layer-by-layer deposition from solutions and synthesis of CuO nanorods-graphene nanocomposite. Rev Adv Mater Sci. 2017;49(1):28-37.
  25. Ermakov SS, Nikolaev KG, Tolstoy VP. Novel electrochemical sensors with electrodes based on multilayers fabricated by layer-by-layer synthesis and their analytical potential. Russian Chemical Reviews. 2016;85(8):880-900. https://doi.org/10.1070/rcr4605.
  26. Korotcenkov G, Cho BK, Gulina LB, Tolstoy VP. Synthesis of metal oxide-based nanocomposites and multicomponent compounds using layer-by-layer method and prospects for their application. Jurnal Teknologi. 2015;75(7). https://doi.org/10.11113/jt.v75.5165.
  27. Бурулев В.В., Толстой В.П. Нано- и микроконтейнеры для доставки лекарств, получаемые в условиях послойного синтеза // Исследование, технология и использование нанопористых носителей лекарств в медицине / под ред. В.Я. Шевченко, О.И. Киселева, В.Н. Соколова. – СПб.: Химиздат, 2015. [Burulev VV, Tolstoy VP. Nano- i mikrokonteynery dlya dostavki lekarstv, poluchaemye v usloviyakh posloynogo sinteza. In: Issledovanie, tekhnologiya i ispol’zovanie nano-poristykh nositeley lekarstv v meditsine. Ed. by V.Y. Shevchenko, O.I. Kiselev, V.N. Sokolov. Saint Petersburg: Khimizdat; 2015. (In Russ.)]
  28. Du M, Song W, Cui Y, et al. Fabrication and biological application of nano-hydroxyapatite (nHA)/alginate (ALG) hydrogel as scaffolds. J Mater Chem. 2011;21(7):2228-2236. https://doi.org/10.1039/c0jm02869j.
  29. Huang C, Fang G, Zhao Y, et al. Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydr Polym. 2019;222:115036. https://doi.org/10.1016/j.carbpol.2019.115036.
  30. Kong J, Wei B, Groth T, et al. Biomineralization improves mechanical and osteogenic properties of multilayer-modified PLGA porous scaffolds. J Biomed Mater Res A. 2018;106(10):2714-2725. https://doi.org/10.1002/jbm.a.36487.
  31. Gentile P, Ferreira AM, Callaghan JT, et al. Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Adv Healthc Mater. 2017;6(8). https://doi.org/10.1002/adhm.201601182.
  32. Preechawong J, Noulta K, Dubas ST, et al. Nanolayer film on poly(styrene/ethylene glycol dimethacrylate) high internal phase emulsion porous polymer surface as a scaffold for tissue engineering application. J Nanomater. 2019;2019:1-10. https://doi.org/10.1155/2019/7268192.
  33. Cao S, Li H, Li K, et al. In vitro mineralization of MC3T3-E1 osteoblast-like cells on collagen/nano-hydroxyapatite scaffolds coated carbon/carbon composites. J Biomed Mater Res A. 2016;104(2):533-543. https://doi.org/10.1002/jbm.a.35593.
  34. Aguiar AE, de OSM, Rodas ACD, Bertran CA. Mineralized layered films of xanthan and chitosan stabilized by polysaccharide interactions: A promising material for bone tissue repair. Carbohydr Polym. 2019;207:480-491. https://doi.org/10.1016/j.carbpol.2018.12.006.
  35. Rial R, Costa RR, Reis RL, et al. Mineralization of layer-by-layer ultrathin films containing microfluidic-produced hydroxyapatite nanorods. Cryst Growth Des. 2019;19(11):6351-6359. https://doi.org/10.1021/acs.cgd.9b00831.
  36. Colaco E, Brouri D, Aissaoui N, et al. Hierarchical collagen-hydroxyapatite nanostructures designed through layer-by-layer assembly of crystal-decorated fibrils. Biomacromolecules. 2019;20(12):4522-4534. https://doi.org/10.1021/acs.biomac.9b01299.
  37. Zomorodian A, Ribeiro IA, Fernandes JCS, et al. Biopolymeric coatings for delivery of antibiotic and controlled degradation of bioresorbable Mg AZ31 alloys. Int J Polym Mater. 2017;66(11):533-543. https://doi.org/ 10.1080/00914037.2016.1252347.
  38. Li M, Liu X, Xu Z, et al. Dopamine modified organic-inorganic hybrid coating for antimicrobial and osteogenesis. ACS Appl Mater Interfaces. 2016;8(49):33972-33981. https://doi.org/10.1021/acsami.6b09457.
  39. Wu Y, Liu X, Li Y, Wang M. Surface-adhesive layer-by-layer assembled hydroxyapatite for bioinspired functionalization of titanium surfaces. RSC Adv. 2014;4(84):44427-44433. https://doi.org/10.1039/c4ra07907h.
  40. Ji X-J, Gao L, Liu J-C, et al. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids Surf B Biointerfaces. 2019;179:429-436. https://doi.org/10.1016/j.colsurfb.2019.04.029.
  41. Chen W, Shen X, Hu Y, et al. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis. Biomaterials. 2017;114:82-96. https://doi.org/10.1016/j.biomaterials.2016.10.055.
  42. Peng M, Zhang X, Xiao X, et al. Polyelectrolytes fabrication on magnesium alloy surface by layer-by-layer assembly technique with antiplatelet adhesion and antibacterial activities. J Coat Technol Res. 2019;16(3):857-868. https://doi.org/10.1007/s11998-018-00162-6.
  43. Ji X-J, Gao L, Liu J-C, et al. Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciprofloxacin-loaded polymeric multilayers on magnesium alloy. Prog Org Coat. 2019;135:465-474. https://doi.org/10.1016/j.porgcoat.2019.06.048.
  44. Hwang S-J, Lee J-S, Ryu T-K, et al. Alendronate-modified hydroxyapatite nanoparticles for bone-specific dual delivery of drug and bone mineral. Macromol Res. 2016;24(7):623-628. https://doi.org/10.1007/s13233-016-4094-5.
  45. Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2020;112:110893. https://doi.org/10.1016/ j.msec.2020.110893.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 5. Schematic representation of layered deposition on a spiral framework of PLGA cationic chitosan (indicated in red) and anionic hydroxyapatite (indicated in blue)

Download (174KB)
3. Fig. 6. Schematic diagram of the stages of layer-by-layer chemical assembly of nanoparticles with core-shell morphology containing hydroxyapatite (HAP), sodium alginate (ALG), polyallylamine (PAA) and alendronate

Download (120KB)
4. Fig. 1. Hydroxyapatite preparation methods

Download (164KB)
5. Fig. 2. Schematic representation of examples of the uses of hydroxyapatite in biomedicine

Download (176KB)
6. Fig. 3. The process of producing a composite 3D scaffold from a mixture of hydroxyapatite (HAp) with gelatin (Gel) followed by surface modification by layer-by-layer synthesis using solutions of chitosan (CHI) and hyaluronic acid (HA)

Download (94KB)
7. Fig. 5. Schematic representation of layer-by-layer deposition on a pLGA spiral scaffold of cationic chitosan (indicated in red) and anionic hydroxyapatite (indicated in blue)

Download (140KB)
8. Fig. 6. Schematic representation of the stages of a layered chemical assembly of nanoparticles with core–shell morphology, containing hydroxyapatite (HAp), sodium alginate (ALG), polyallylamine (PAA), and alendronate

Download (118KB)

Copyright (c) 2020 Meleshko A.A., Tolstoy V.P., Afinogenov G.E., Levshakova A.S., Afinogenova A.G., Muldiyarov V.P., Vissarionov S.V., Linnik S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies