先天性脊柱侧凸发生中的遗传决定因素作用。文献综述

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。先天性脊柱侧凸是一种复杂的多因素疾病,由于胚胎发育期间脊柱形成过程的异常所致。胚胎发育任何阶段出现障碍均可能导致先天性脊柱侧凸,进而引发脊柱进行性畸形。最近研究越来越多指出,遗传因素是该病发展的重要决定因素。

目的。分析文献数据,探讨先天性脊柱侧凸的遗传基础、分子调控机制、其发生频率、突变改变及特定基因的作用。

材料与方法。通过在PubMed、Google Scholar、Cochrane Library、Web of Science、 Lens.org、eLibrary数据库,以关键词进行文献检索,检索范围覆盖近25年。纳入标准包括:全文来源、荟萃分析、系统综述、先天性脊柱侧凸患者的队列研究、动物实验模型、病例-对照研究。排除标准包括:无全文、专利、实用新型、无临床数据支持的研究。根据上述标准,共筛选出54篇文献进行详细分析。

结果。根据文献分析,相关基因分为4类:易感基因(LMX1A、PTK7、SOX9、TBX6、TBXT);突变可直接导致伴发脊柱侧凸的综合征或单基因疾病的基因(FBN1);拷贝数变异基因(DHX40、DSCAM、MYSM1、 NOTCH2);在脊柱侧凸患者中出现异常甲基化的基因(COL5A1、GRID1、GSE1、RGS3、SORCS2、IGH1、 IGH3、IGHM、KAT6B、TNS3)。

结论。科学文献分析显示,存在与先天性脊柱侧凸发生及其不同表型表现相关的遗传易感因素。 大规模研究数据有助于进一步厘清病因,拓展对先天性脊柱侧凸病程的预测能力。同时,小样本研究可能为进一步寻找该疾病的遗传决定因素提供研究前景。

全文:

受限制的访问

作者简介

Sergei V. Vissarionov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN 代码: 7125-4930

MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

俄罗斯联邦, Saint Petersburg

Polina А. Pershina

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: polinaiva2772@gmail.com
ORCID iD: 0000-0001-5665-3009
SPIN 代码: 2484-9463

MD, PhD student

俄罗斯联邦, Saint Petersburg

Sergey E. Khalchitsky

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: s_khalchitski@mail.ru
ORCID iD: 0000-0003-1467-8739
SPIN 代码: 2143-7822

PhD, Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg

Marat S. Asadulaev

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN 代码: 3336-8996
Scopus 作者 ID: 57191618743

MD, PhD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

参考

  1. McMaster MJ, Ohtsuka K. The natural history of congenital scoliosis. A study of two hundred and fifty-one patients. J Bone Joint Surg Am. 1982;64(8):1128–1147.
  2. Vissarionov SV, Kartavenko KA, Kokushin DN. Natural course of congenital spinal deformity in children with isolated vertebral formation disorder in the lumbar region. Spine Surgery. 2018;15(1):6–17. EDN: UPDMJW doi: 10.14531/ss2018.1.6-17
  3. Vissarionov SV, Asadulaev MS, Orlova EA. Assessment of the respiratory system in children with congenital scoliosis using impulse oscillometry and computed tomography (preliminary results). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(1):33–42. EDN: XAVVMT doi: 10.17816/ortho102133-42
  4. Ulrich EV, Mushkin AY, Rubin AV. Congenital spinal deformities in children: epidemiology prognosis and management strategy. Spine Surgery. 2009;(2):25–30. (In Russ).
  5. Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip Rev Dev Biol. 2012;1(3):401–423. doi: 10.1002/wdev.34
  6. Mackel CE, Jada A, Samdani AF, et al. A comprehensive review of the diagnosis and management of congenital scoliosis. Childs Nerv Syst. 2018;34(11):2155–2171. EDN: ZIWCEZ doi: 10.1007/s00381-018-3915-6
  7. Kerna NA, Carsrud NV, Zhao X, et al. The pathophysiology of scoliosis across the spectrum of human physiological systems. Eur J Med Health Res. 2024;2(2):69–81. EDN: SNVPKV doi: 10.59324/ejmhr.2024.2(2).07
  8. Turnpenny PD. Congenital scoliosis and segmentation defects of the vertebrae in the genetic clinic. In: Kusumi K, Dunwoodie S, eds. The genetics and development of scoliosis. Cham: Springer; 2018. P. 63–88. doi: 10.1007/978-3-319-90149-7_3
  9. Morriss-Kay GM, Sokolova N. Embryonic development and pattern formation. FASEB J. 1996;10(9):961–968. doi: 10.1096/fasebj.10.9.8801178
  10. Christ B, Scaal M. Formation and differentiation of avian somite derivatives. Adv Exp Med Biol. 2008;638:1–41. doi: 10.1007/978-0-387-09606-3_1
  11. Sun D, Ding Z, Hai Y, et al. Advances in epigenetic research of adolescent idiopathic scoliosis and congenital scoliosis. Front Genet. 2023;14:1211376. EDN: IRJEVB doi: 10.3389/fgene.2023.1211376
  12. Hunter T. Signaling – 2000 and beyond. Cell. 2000;100(1):113–127. doi: 10.1016/s0092-8674(00)81688-8
  13. Giampietro PF, Dunwoodie SL, Kusumi K, et al. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans. Ann NY Acad Sci. 2008;1151(1):38–67. doi: 10.1111/j.1749-6632.2008.03452.x
  14. Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthop. 2013;4(4):167–174. doi: 10.5312/wjo.v4.i4.167
  15. Diaz-Cuadros M, Wagner DE, Budjan C, et al. In vitro characterization of the human segmentation clock. Nature. 2020;580(7801):113–118. EDN: ZAGEEO doi: 10.1038/s41586-019-1885-9
  16. Al-Kateb H, Khanna G, Filges I, et al. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement. Am J Med Genet A. 2014;164A(5):1118–1126. doi: 10.1002/ajmg.a.36401
  17. Chunhui S, Hebao Y, Li W, et al. FAK promotes osteoblast progenitor cell proliferation and differentiation by enhancing Wnt signaling. J Bone Miner Res. 2016;31(12):2227–2238. doi: 10.1002/jbmr.2908
  18. Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181. EDN: YYUIEE doi: 10.1038/s41392-020-00222-7
  19. Jain R, Rentschler S, Epstein JA. Notch and cardiac outflow tract development. Ann NY Acad Sci. 2010;1188:184–190. EDN: NZFCVX doi: 10.1111/j.1749-6632.2009.05099.x
  20. Muguruma Y, Hozumi K, Warita H, et al. Maintenance of bone homeostasis by DLL1-mediated notch signaling. J Cell Physiol. 2017;232(10):2569–2580. doi: 10.1002/jcp.25647
  21. Rajesh D, Dahia CL. Role of sonic hedgehog signaling pathway in intervertebral disc formation and maintenance. Curr Mol Biol Rep. 2018;4(4):173–179. doi: 10.1007/s40610-018-0107-9
  22. Lawson LY, Harfe BD. Developmental mechanisms of intervertebral disc and vertebral column formation. Wiley Interdiscip Rev Dev Biol. 2017;6(6):e283. doi: 10.1002/wdev.283
  23. Wen X, Jiao L, Tan H. MAPK/ERK Pathway as a central regulator in vertebrate organ regeneration. Int J Mol Sci. 2022;23(3):1464. EDN: ELHHFS doi: 10.3390/ijms23031464
  24. Lorente R, Mariscal G, Lorente A. Incidence of genitourinary anomalies in congenital scoliosis: systematic review and meta-analysis. Eur Spine J. 2023;32(11):3961–3969. EDN: MPCWKC doi: 10.1007/s00586-023-07214-4
  25. Chen S, Liu S, Ma K, et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage. 2019;27(6):837–845. doi: 10.1016/j.joca.2019.05.001
  26. Baldridge D, Shchelochkov O, Kelley B, et al. Signaling pathways in human skeletal dysplasias. Annu Rev Genomics Hum Genet. 2010;11:189–217. doi: 10.1146/annurev-genom-082908-150158
  27. Neben CL, Lo M, Jura N, et al. Feedback regulation of RTK signaling in development. Dev Biol. 2017;428(1):7–14. doi: 10.1016/j.ydbio.2017.10.007
  28. Wu N, Yuan S, Liu J, et al. Association of LMX1A genetic polymorphisms with susceptibility to congenital scoliosis in Chinese Han population. Spine. 2014;39(21):1785–1791. doi: 10.1097/BRS.0000000000000536
  29. Fei Q, Wu Z, Wang Y, et al. Association of LMX1A gene polymorphisms with susceptibility to congenital scoliosis in a Chinese Han population. Chinese Journal of Tissue Engineering Research. 2011;15(35):6510–6515.
  30. Wu N, Giampietro PF, Takeda K. The genetics contributing to disorders involving congenital scoliosis. In: Kusumi K, Dunwoodie SL, editors. The genetics and development of scoliosis. Springer; 2018. P. 89–106. doi: 10.1007/978-3-319-90149-7_4
  31. Hayes M, Gao X, Yu LX, et al. Ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun. 2014;5:4777. EDN: YETVVP doi: 10.1038/ncomms5777
  32. Wang M. Role of the protein tyrosine kinase 7 gene in human neural tube defects. Mingqin Wang; 2015. Available from: https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/13428/Wang_Mingqin_2015_Memoire.pdf?sequence=4&isAllowed=y [cited 2025 Feb 9]
  33. Meier N. Whole exome sequencing for gene discovery in lethal fetal disorders [dissertation]. Basel; 2021. 60 p.
  34. Su Z, Yang Y, Wang S, et al. The mutational landscape of ptk7 in congenital scoliosis and adolescent idiopathic scoliosis. Genes (Basel). 2021;12(11):1791. EDN: WYLNVL doi: 10.3390/genes12111791
  35. Wu N, Wang L, Hu J, et al. A recurrent rare SOX9 variant (M469V) is associated with congenital vertebral malformations. Curr Gene Ther. 2019;19(4):242–247. doi: 10.2174/1566523219666190924120307
  36. Latypova X, Creadore SG, Dahan-Oliel N, et al. A genomic approach to delineating the occurrence of scoliosis in arthrogryposis multiplex congenita. Genes (Basel). 2021;12(7):1052. EDN: ENSMWJ doi: 10.3390/genes12071052
  37. Liu J, Wu N; Deciphering Disorders Involving Scoliosis and Comorbidities (DISCO) study, et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med. 2019;21(7):1548–1558. doi: 10.1038/s41436-018-0377-x
  38. Chen Z, Yan Z, Yu C, et al. Cost-effectiveness analysis of using the TBX6-associated congenital scoliosis risk score (TACScore) in genetic diagnosis of congenital scoliosis. Orphanet Journal of Rare Diseases. 2020;15(1):123. EDN: SMDATS doi: 10.1186/s13023-020-01537-y
  39. Chen W, Liu J, Yuan D, et al. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget. 2016;7(37):57430–57441. doi: 10.18632/oncotarget.11147
  40. Khalchitsky S, Vissarionov S, Kokushin D, et al. Influence of the TBX6 gene on the development of congenital spinal deformities in children. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(3):229–237. EDN: HCDKDO doi: 10.17816/PTORS70797
  41. Yang N, Wu N, Liu J, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet. 2019;28(4):539–547. EDN: FDRHYP doi: 10.1093/hmg/ddy362
  42. Feng X, Cheung JPY, Je JSH, et al. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J Orthop Res. 2021;39(5):971–988. EDN: GQQCGX doi: 10.1002/jor.24805
  43. Zhang W, Yao Z, Guo R, et al. Molecular identification of T-box transcription factor 6 and prognostic assessment in patients with congenital scoliosis. Front Med (Lausanne). 2022;9:941468. EDN: HPLQXO doi: 10.3389/fmed.2022.941468
  44. Lin M, Zhao S, Liu G, et al. Identification of novel FBN1 variations implicated in congenital scoliosis. J Hum Genet. 2020;65(3):221–230. EDN: WWGKJN doi: 10.1038/s10038-019-0698-x
  45. Lin M, Liu Z, Liu G, et al. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med. 2019;7(3):e1023. doi: 10.1002/mgg3.1023
  46. Liu J, Zhou Y, Liu S, et al. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum Genet. 2018;137(6–7):553–567. EDN: YITURF doi: 10.1007/s00439-018-1910-3
  47. Lai W, Feng X, Yue M, et al. Identification of copy number variants in a Southern Chinese cohort of patients with congenital scoliosis. Genes. 2021;12(8):1213. EDN: WSOROR doi: 10.3390/genes12081213
  48. DiTommaso T, Jones LK, Cottle DL, et al. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse. PLoS Genet. 2014;10(10):e1004705. doi: 10.1371/journal.pgen.1004705
  49. Gamba BF, Zechi-Ceide RM, Kokitsu-Nakata NM, et al. Interstitial 1q21.1 microdeletion is associated with severe skeletal anomalies, dysmorphic face and moderate intellectual disability. Mol Syndr. 2016;7(6):344–348. doi: 10.1159/000452649
  50. Szoszkiewicz A, Bukowska-Olech E, Jamsheer A. Molecular landscape of congenital vertebral malformations: recent discoveries and future directions. Orphanet J Rare Dis. 2024;19(1):32. EDN: HSSCDD doi: 10.1186/s13023-024-03040-0
  51. Liu G, Zhao H, Yan Z, et al. Whole-genome methylation analysis reveals novel epigenetic perturbations of congenital scoliosis. Mol Ther Nucleic Acids. 2021;23:1281–1287. EDN: TPFOML doi: 10.1016/j.omtn.2021.02.002
  52. Wu Y, Zhang H, Tang M, et al. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis. J Transl Med. 2020;18(1):210. EDN: DECJVN doi: 10.1186/s12967-020-02367-z
  53. Yanay N, Elbaz M, Konikov-Rozenman J, et al. Pax7, Pax3 and TNS3 genes are involved in skeletal muscle and vertebral development. Hum Mol Genet. 2019;28(20):3369–3379. doi: 10.1093/hmg/ddz261
  54. Wu YT, Zhang H, Tang M, et al. Abnormal TNS3 gene methylation in patients with congenital scoliosis. BMC Musculoskelet Disord. 2022;23:5730. EDN: EKZHQQ doi: 10.1186/s12891-022-05730-x

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.