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ABSTRACT

Prostate cancer is a significant problem in modern oncourology due to its high incidence and mortality, largely due to untimely
diagnosis of the disease. This article provides an overview of current diagnostic methods, including biopsy and magnetic
resonance imaging, highlighting their limitations such as invasiveness and insufficient sensitivity. Given the need for more
accurate and non-invasive diagnostic techniques, the potential use of an “electronic nose” — a multisensory system capable
of detecting volatile organic compounds in urine samples — is explored. The literature review indicates that the use of this
technique may offer high sensitivity and specificity in detecting prostate cancer, comparable to results obtained from spe-
cially trained detection dogs. The article analyzes recent clinical studies that validate the effectiveness of the electronic nose
in identifying prostate cancer and describes the machine learning methodologies employed for recognizing urine samples.
It is important to create uniform standards for the analysis of the gas composition of urine using the electronic nose.
For the widespread implementation of this diagnostic method, it is necessary to conduct large randomized studies with the
formation of a sufficient evidence base.
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AHHOTALNA

PaKk npepncratenbHoi xenesbl NpeacTaBnseT coboii 3HauUTeNbHY0 NPOBEMY COBPEMEHHOW OHKOYPONIOMUM 13-3a BbICOKOI
3ab01eBaEMOCTU U CMEPTHOCTH, B 3HAUMTENBHOI CTENeHN 0bYCNOBNEHHBIX HECBOEBPEMEHHOW AMArHOCTUKON 3aboneBaHus.
B naHHOM cTaTbe paccMOTpeHbl COBPEMEHHblE MeTOoAbl AWMArHOCTMKM paKa MpeAcTaTeNibHOM JKenesbl, BKIoYas buoncuio
1 MarHUTHO-pe30HaHCHY0 TOMOrpaduio, a TakXKe X OrpaHNYeHNs, Takue KaK MHBA3MBHOCTb W HeLLOCTaTOuHas YyBCTBUTESTb-
HocTb. C yyeToM HeobxogmMocTu pa3paboTku boniee TOUYHbIX M HEMHBA3MBHBLIX METOAO0B AMArHOCTUKU UCCNefyeTcsl NOTeH-
LMan npuMeHeHUs «3IEKTPOHHOMO HOCa» — MYJIbTUCEHCOPHON CUCTEMBI, CIOCOBHOM 00HApYXKMBATb NETY4Me OpraHUYeckue
coeauHeHus B obpasuax Moumn. 063op NuTepaTypbl MOKa3bIBAET, YTO UCMOb30BaHUE JAHHOW METOAMKM MOXKET 00ecneumnTb
BbICOKYI0 YYBCTBUTENBHOCTb M CMELMGUYHOCTb B IMArHOCTUKE paKa NpeACcTaTeslbHOM Jenesbl, aHanorMyHo pesynbTataM, no-
JIY4EHHBIM C MOMOLLbH CrieLnanbHO 06y4eHHbIX cobak. CTaTbs BKIIOYAET aHaAM3 CYLLECTBYHOLLMX UCCEA0BaHUIA, NOATBEPHK-
Aalowmx 3QHeKTUBHOCTb «3NIEKTPOHHOTO HOCa» B BbISBNIEHUM 3aboneBaHus, @ TakxKe NpuBeaeHa MeTo0/10MUs MaLUMHHOTO
0byyeHus, ucrnonb3yeMas A8 pacno3HaBaHus 06pasuoB Mouu. BaxHoe 3HauyeHue MMeeT co3faHue efuHbIX CTaHLapToB
aHanu3a rasoBoro CocTaBa Mo C UCMOSIb30BAHMEM «3/IEKTPOHHOTO HOCax. [N1Sl LUIMPOKOro BHEPEHUs AaHHOTO AMArHOCTM-
YecKoro MeToa HeobXoLMMO MPOBEAEHNE KPYMHBIX PaHAOMU3MPOBAHHbIX UCCEA0BaHUA C GOPMUPOBAHUEM [LOCTATOUHOM
L0Ka3aTesibHoi 6a3bl.
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REVIEW

Urologic cancers contribute substantially to global
morbidity and mortality, primarily due to delayed diag-
nosis [1, 2]. Mortality from these conditions is projected
to increase and, according to various estimates, may
account for 13.1 million deaths worldwide by 2030 [3].
Prostate cancer (PCa) is the most commonly diagnosed
malignant neoplasm among men globally [4]. In 2020,
there were 1.4 million newly diagnosed cases world-
wide, with approximately 375,000 deaths attributed to
disease-related complications. In the Russian Federa-
tion, 40,785 new cases were registered in 2020, making
it the second most common cancer, with 12,565 deaths
reported [5]. One of the primary reasons for the persis-
tently high incidence and mortality rates of PCa is late
detection. This malignancy often progresses asymp-
tomatically or with nonspecific symptoms; when clinical
signs appear, the disease is typically locally advanced or
metastatic [6].

According to the 2024 guidelines of the European
Association of Urology, indications for prostate biopsy
include elevated prostate-specific antigen (PSA) levels
and/or the presence of a hard nodule on digital rectal
examination, as well as pathologic lesions identified
by contrast-enhanced pelvic magnetic resonance ima-
ging (MRI) [7, 8]. Currently available diagnostic methods
for PCa are invasive and have limited sensitivity and
specificity, underscoring the need for more accurate
screening tools. The limitations of existing approaches
contribute to delayed diagnosis and high mortality rates.
Digital rectal examination remains one of the simplest
and most accessible diagnostic methods for PCa. Howev-
er, it is subjective and considered a “late-stage” diagnos-
tic tool, as stony-hard induration, indicative of PCa, are
typically detectable only when the lesion is significantly
enlarged or superficially located in the peripheral zone.
In the PROBASE study (n=6537), digital rectal examina-
tion identified stony-hard induration in only 57 partici-
pants, with prostate cancer subsequently confirmed in
just 3 cases, corresponding to a detection rate of 0.03%
[9, 10]. In a meta-analysis by Matsukawa et al. [11],
85,798 men underwent PCa screening, with digital rectal
examination abnormalities found in 4718 patients (6.6%).
Beyond its low predictive value, digital rectal examina-
tion is also associated with discomfort and psychological
stress for patients [12].

Interest in identification of cancer biomarkers in
biological fluids emerged during the 1960s and 1970s,
paralleling advances in immunology. The first study
quantifying PSA levels for PCa diagnosis was conduct-
ed by Stame et al. in 1980 [13]. Since the 2000s, total
PSA testing has become one of the most widely used
methods for PCa screening and diagnosis and remains a
recommended approach. Despite its broad clinical use,
total PSA testing lacks specificity and results in unnec-
essary prostate hiopsies in approximately two-thirds of
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cases [7, 14, 15]. Conversely, clinically significant PCa is
sometimes detected in patients with normal total PSA le-
vels [16]. Autopsy studies indicate that approximately
40% of men who do not undergo regular screening have
PCa; this prevalence increases to 60% in individuals
over 80 years of age. Notably, only 32% of these cases
represent clinically significant disease (ISUP >2) [17].
According to Gao et al. [18], initial biopsy confirms PCa in
only 22% of cases, while more than one-third of biopsies
reveal clinically insignificant process. Since PSA exists
in various molecular forms in serum (including free PSA
and multiple isoforms), numerous efforts have aimed to
enhance diagnostic accuracy by quantifying these iso-
forms. Although assessing the free-to-total PSA ratio
and isoform p2PSA increases cancer detection rates,
these approaches lack sufficient diagnostic value and
cost-effectiveness for routine PCa screening [14].

Currently, in cases of suspected PCa, contrast-en-
hanced pelvic MRI is recommended prior to prostate bi-
opsy for staging purposes [8]. MRI demonstrates a high
negative predictive value—approximately 90%—with
minimal variability across centers. In contrast, its positive
predictive value is comparatively low: reported rates are
17%, 46%, and 75% for lesions with Prostate Imaging Re-
porting and Data System (PI-RADS) scores of 3, 4, and 5,
respectively. However, studies comparing MRI findings
with histopathological data following radical prostatec-
tomy reveal that 8% to 24% of clinically significant PCa
(ISUP =2) may go undetected by imaging, including pros-
tate MRI [19]. This discrepancy may result from techni-
cal or interpretive limitations and the presence of rare
histologic subtypes, such as cribriform PCa [20].

Ongoing efforts to reduce diagnostic invasiveness led
to a 2022 study by Meissner et al. [21], where 25 pa-
tients underwent robot-assisted radical prostatectomy
without prior prostate biopsy. All patients demonstrated
PI-RADS =4 lesions on contrast-enhanced prostate MRI
and underwent Ga68-PSMA positron emission tomogra-
phy/computed tomography (PET/CT), which revealed reli-
able evidence of pathological radiopharmaceutical uptake
in the prostate (SUV,,,, =9.0). Histologic examination of
resected specimens confirmed clinically significant PCa
(ISUP =2) in all patients. These findings suggest the fea-
sibility of radical prostatectomy without preoperative
biopsy, although further studies with larger, ethics com-
mittee—approved cohorts are needed [21].

Thus, there is a critical need to develop novel diag-
nostic tools for earlier and more accurate PCa detection
that meet criteria for noninvasiveness. In recent years,
several potentially promising biomarkers and test sys-
tems have been investigated, including prostate cancer
antigen 3 (PCA3) and the prostate health index (PHI),
both FDA-approved, as well as commercial tests such
as the 4Kscore panel (total PSA, free PSA, intact PSA,
and human kallikrein-related peptidase 2), and molecular
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diagnostic assays such as SelectMDx, ConfirmMDx, MiPS,
and the Stockholm3 test [22-27].

PCA3 was identified in the late 1990s through col-
laborative research of Radboud University and Johns
Hopkins Hospital. It is a long non-coding RNA mapped
to chromosome 9g21-22 within intron 6 of the
PRUNEZ gene, which is overexpressed in prostate cancer
cells. PCA3 mRNA levels are measured in urinary sedi-
ment collected after digital rectal examination. Although
PCA3 is a reliable tool for prostate cancer detection,
studies report no significant correlation with tumor ag-
gressiveness or clinical stage [27].

In 2012, the U.S. Food and Drug Administration (FDA)
approved the use of the prostate health index for early
detection of PCa. The prostate health index is a composite
score calculated by multiplying the ratio of [-2]proPSA to
free PSA by the square root of total PSA. In a large pro-
spective multicenter study including 892 men with total
PSA levels between 2 and 10 ng/mL, the prostate health
index demonstrated sensitivity ranging from 80% to 95%
and superior specificity compared with total or free PSA
testing alone [24].

Also in 2012, a group led by Vickers introduced the
4Kscore test to assess the likelihood of clinically signifi-
cant PCa. This test measures four kallikrein biomarkers
in serum (total PSA, free PSA, intact PSA, and human
kallikrein-related peptidase 2) and incorporates clinical
variables, including patient age, digital rectal examina-
tion findings, and prostate biopsy history [26]. In a sys-
tematic review by Zappala et al. [28], the diagnostic ac-
curacy of the 4Kscore was 81%; however, there remains
insufficient evidence to support the routine use of the
4Kscore in diagnosing clinically significant PCa. Despite
promising data for these and other diagnostic tools—
including the Stockholm3, SelectMDx, ConfirmMDx, and
MiPS tests—their adoption is currently limited by lower
cost-effectiveness compared with traditional diagnostic
methods [8, 22-27].

Given the limited diagnostic accuracy of the afore-
mentioned methods, there remains a pressing need for
a more specific, noninvasive, and accessible approach to
diagnosing and screening for PCa [29].

This review aimed to present the methods and recent
findings of studies utilizing electronic nose technology for
the detection of prostate cancer.

This review was based on a sources search using
the PubMed, Medscape, and eLibrary databases with the
following keywords: prostate cancer, volatile organic
compounds, and electronic nose. The analysis focused
on studies conducted by research teams from Russia,
the United States, Europe, and China, primarily published
between 2020 and 2024.

The use of urine in disease detection has a long-
standing history in medicine [29]. As a renal filtrate, urine
reflects systemic metabolic processes and is readily
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available in large volumes, requiring no invasive collec-
tion procedures. Urine has the potential to provide valu-
able information not only about diseases of the urinary
and male reproductive systems but also about disorders
of distant organ systems, owing to the presence of char-
acteristic volatile organic compounds (VOCs) [30, 31].
VOCs are naturally occurring chemical compounds with
low boiling points [32]. These compounds are produced
through oxidative stress and lipid peroxidation of cel-
lular membranes and are excreted in feces, urine, and
sweat [33-36]. The disease-specific release of VOCs has
been validated in numerous studies employing specially
trained scent detection dogs [1,37-42]. However, de-
spite high sensitivity, specificity, and diagnostic accuracy
in detecting cancer, particularly PCa, the integration of
canine olfactory detection into clinical practice is ac-
companied by several limitations. These include the high
cost and duration of training, susceptibility to fatigue and
boredom, and difficulty incorporating animals into stan-
dardized clinical protocols [43, 44].

Inspired by the promising results of canine detection
of PCa, researchers have explored instrumental alterna-
tives such as the electronic nose to replicate these fin-
dings [37-40, 43-45]. An electronic nose is a multisensor
system comprising an array of selective or non-selective
sensors with cross-sensitivity, trained for pattern rec-
ognition of diverse vapor and gas mixtures. Unlike con-
ventional sensors, modern electronic nose devices can
identify specific gases even at minimal concentrations
due to their use of non-selective sensor [46]. Similar to
mammalian olfactory systems, the software component
of electronic nose comprises a sensor network (gas sen-
sor matrix and transmission pathways) and a data pro-
cessing unit, which identifies and classifies each detected
odor by creating unique digital signatures of chemical
compounds [47-52]. Each sensor contains a metal oxide
film and a measurement transducer that adsorbs VOCs on
its surface. This interaction alters the resonant frequency
due to a change in sensor surface mass, a relationship
described by the Sauerbrey equation [53]. Sensor-VOC
interactions are governed by weak forces such as van der
Waals, dipole-dipole, and hydrogen bonds. The frequency
shift relative to baseline constitutes the sensor response.
The final result is a sensor response pattern from all
sensors. The matrix containing all measurements is then
extracted using specialized software [54].

Prior to its diagnostic application in oncology, the
electronic nose undergoes a machine learning phase,
where VOC patterns from cancer and control groups are
analyzed to create a database of “urinary profiles” for
comparison with new samples. The machine learning
process involves data acquisition, modeling, training, and
evaluation standardization (Fig. 1) [47, 54]. Major advan-
tages of the electronic nose include rapid analysis, ease
of use, low cost, and compact design (Fig. 2) [49, 50].
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The first published study using the electronic nose
for PCa detection in urine samples was conducted by
D’Amico et al. in 2012. This pilot study including 21 pa-
tients demonstrated promising results and served as
a foundation for further research [55] (Table 1).

The ability of the electronic nose to distinguish PCa
from benign prostatic hyperplasia (BPH) based on uri-
nary VOC profiles was evaluated by Roine et al. [56].
The study included 50 patients with PCa scheduled for
robot-assisted radical prostatectomy and 15 patients
with BPH scheduled for transurethral resection of the
prostate. The electronic nose demonstrated a sensitivity
of 78% and specificity of 67% for PCa detection, with an
area under the curve (AUC) of 0.77. A study limitation
was the potential underdiagnosis of PCa, as the periph-
eral zone—where PCa most frequently arises—is not
resected during transurethral procedures.

The importance of proper sample collection for re-
liable PCa diagnosis was supported in a prospective
study by Asimakopoulos et al. [54], where urine samples
from 41 patients were collected prior to prostate biopsy.
Each patient provided both a first-void and midstream
urine sample, which were immediately analyzed using
an electronic nose. First-void urine more accurately in-
dicated the presence of PCa compared with midstream
urine. The electronic nose correctly detected PCa in 10 of
14 cases — sensitivity 71.4% (95% confidence interval,
Cl 42%-92%)—and correctly excluded it in 25 of 27 pa-
tients — specificity 92.6% (95% confidence interval, Cl
76%-99%).

Solovieva et al. [57] analyzed urinary VOC patterns
associated with PCa using electronic nose technology.
The study included 89 urine samples (43 patients with
confirmed PCa and 46 control group patients). The au-
thors compared various machine learning approaches for
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the electronic nose, with the logistic regression model
demonstrating the best performance. The sensitivity of
PCa detection using this model was 100%, with a speci-
ficity of 93%. The limitation of this study was the rela-
tively small patient sample size. To obtain more accurate
and reliable results for the application of the logistic re-
gression model in diagnosing PCa using electronic nose,
large-scale multicenter studies with a greater number of
patients are necessary.

Urinary VOC detection across three different void
fractions was assessed by Capelli et al. [44], who in-
cluded 132 PCa patients and 60 controls. Sensitivity in
detecting PCa using the electronic nose was 81% for
the first-void, 75% for midstream, and 27% for terminal
fractions. Catheterized samples yielded 91% sensitivity.
However, the authors do not describe the specificity or
accuracy of the study. These findings support earlier re-
sults by Asimakopoulos et al. [54], who first identified
a stronger association between first-void urine and PCa
detectability.

In 2022, Filianoti et al. [58] assessed the electronic
nose’s ability to differentiate between urine samples
from PCa patients and healthy individuals. The method
demonstrated 82.7% sensitivity and 88.5% specificity.
However, the authors acknowledged potential confound-
ers such as diet, medications, smoking, alcohol con-
sumption, and chronic kidney disease, which were not
taken into account.

The accuracy of PCa diagnosis using electronic nose
to analyze urine samples was investigated by Taverna
et al. [38] in 2022. A blinded prospective study included
174 patients: 88 (50.6%) in the prostate cancer group
and 86 (49.4%) in the control group. According to sen-
sitivity test, the electronic nose achieved 85.2% sensiti-
vity (13 false negatives out of 88) and 79.1% specificity
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Fig. 1. Algorithm for odor recognition using an electronic nose (comparative diagram of biological and electronic noses). Photo: Marianna
Yerknapeshyan / Scientific Russia. Information sourced from the portal “Scientific Russia” (https://scientificrussia.ru/).
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Fig. 2. Electronic nose “Aramos 7". Photo source: NPO “Pribor” (Saint Petersburg).
Puc. 2. «3nekTpoHHbIi Hoc» ApaMoc 7. UcTounuk doTo: HIMO «[Mpubop» (CaHkT-MeTepbypr).

(18 false positives out of 86). Notably, PCa could not
be ruled out even in cases with PSA <2.5 ng/mL, nega-
tive digital rectal examination, and no family history
of PCa.

In a 2024 study, Taverna et al. [59] evaluated the
feasibility of using the electronic nose to assess PCa
aggressiveness (well-, moderately, and poorly differ-
entiated) through the analysis of urine VOC profiles.
The electronic nose was trained on urine samples from
329 patients in the training cohort, who were further
subdivided into three groups: well-differentiated (n=64),
moderately differentiated (n=131) and poorly differenti-
ated prostate cancer (n=134). All patients in the train-
ing cohort (n=329) subsequently underwent radical
prostatectomy. Following training, the test set included

DOl https://doiorg/10.17816/urovedb42499

120 preoperative urine samples. The overall accuracy of
the electronic nose in grading tumor aggressiveness was
79.2%. The study demonstrated high accuracy in assess-
ing PCa aggressiveness by analyzing urinary VOC profiles
using an electronic nose. However, the authors noted
the relatively small cohort size as a limitation. To en-
sure greater reliability, large-scale multicenter studies
are needed [59].

In a study assessing the diagnostic accuracy of the
electronic nose for PCa diagnosis, Duran Acevedo et
al. [60] included 113 participants: 66 with histologically
confirmed PCa and 47 controls, comprising patients with
BPH, chronic prostatitis, and healthy individuals. Partici-
pants refrained from food, smoking, alcohol, and drugs
for 10 hours prior to testing. The diagnostic accuracy for
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Table 1. Results of sensitivity, specificity, and accuracy of prostate cancer diagnosis using an electronic nose

Tabnuua 1. Pe3yanaTb| YyBCTBUTEJIbHOCTH, CI'IELI,VIdJVI‘-IHOCTVI M TOYHOCTU OWArHOCTUKWM paKa npep,CTaTeanoﬁ Xenesbl C NOMOLLbH

«3JIeKTPOHHOr0 HoCa»

Authors Ex;'i)rligtz;)tal gE(?S:)r?/lv) Sensitivity, % Specificity, %
o 50 15 78% 67%
piriois 14 2 71.4% 92.6%
o e 3 6 100% 93%
o 132 60 82% 87%
o 133 139 82.7% 88.5%
AU al 88 86 85.2% 79.1%
o Acevedo et 66 i 94.2% 96.6%
o 56 53 7% 62%

distinguishing PCa from non-malignant conditions was
95.5%. However, as this was a single-center study, mul-
ticenter studies with larger number of participants are
necessary for validation.

Heers et al. [61] evaluated the effectiveness of PCa
diagnosis using electronic nose technology based on
midstream urine samples. The study included 56 patients
with confirmed PCa and 53 controls. The reported sensi-
tivity was 77%, and specificity 62%. The study was limited
by a relatively small sample size and did not stratify PCa
patients according to d’Amico risk classification for clini-
cal significance.

Despite numerous investigations and significant ad-
vances in electronic nose technology for PCa detection,
several unresolved challenges remain. Many studies fail
to account for confounding variables such as comorbidi-
ties affecting metabolism (e.g., diabetes mellitus, gout,
urolithiasis), age, genetic and geographic diversity, life-
style factors including diet, drug use, and alcohol con-
sumption within 24 hours prior to testing. The design
of studies investigating prostate cancer diagnosis using
electronic nose technology is heterogeneous; each study
refers primarily to its own findings or to other works
with inherent limitations. To date, no comprehensive da-
tabases have been developed that consolidate urinary
VOC profiles characteristic of PCa. However, despite the
heterogeneity of study methodologies, these issues are
gradually being addressed through the development of
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more rigorous study designs and efforts to standardize
sample preparation protocols [51, 62].

Another limitation of electronic nose implementa-
tion, despite high sensitivity, specificity, and accuracy,
is sensor signal degradation over time due to oxida-
tion, a phenomenon known as sensor drift. Sensor drift
refers to unpredictable changes in sensor output over
time under consistent exposure to the same VOCs un-
der identical conditions. In the vast majority of stud-
ies, sensor drift and the reproducibility of measure-
ments across different electronic nose devices have
not been addressed. This limitation hinders their clini-
cal applicability, and sensor drift remains one of the
key challenges that must be resolved before electronic
nose technology can be integrated into clinical practice
[63, 64].

Bax et al. [65] developed a drift correction model
using orthogonal signal correction (0SC) algorithms for
PCa detection. Their approach mitigated sensor degrada-
tion effects over a 1-year operational period. They also
proposed a five-step signal correction protocol (5-0SC),
which restored diagnostic accuracy from 55% to 80%
after one year of use. However, the long-term applica-
bility of this correction strategy requires further evalu-
ation before it can be implemented in routine clinical
settings.

In conclusion, this review highlights the promising
potential of electronic nose technology as a noninvasive
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tool for early detection of PCa. However, integration into
clinical screening and diagnostic guidelines will require
large-scale randomized controlled trials to establish
a robust evidence base. The development of standard-
ized protocols for analyzing urinary volatile profiles
using electronic nose technology is of importance [51,
54]. A major challenge is the limited accessibility of ex-
isting research data. Open-access databases contain-
ing urinary VOC profiles from PCa patients and healthy
individuals, along with standardized machine learning
algorithms, would significantly accelerate validation
and facilitate clinical implementation of electronic nose
systems [62].
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