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INTRODUCTION

Sexual identity is a fundamental aspect of human
physiology, which equally divides the entire living popu-
lation into two, but this significant biological variable is
rarely considered when developing basic physiological
research, when transferring results from basic science
into clinical research, or when developing personalized
medical strategies [1]. Sexual differentiation is one of
the most important biological characteristics of all living
organisms, including humans, and it has a significant
and sometimes key influence on the formation, devel-
opment, and functioning of many organs and organ sys-
tems [2, 3].

The lower urinary tract (LUT) is one of the classic ex-
amples of sexual structural and functional dimorphism,
which is actively studied to optimize modern diagnostics
and pharmacotherapy of LUT diseases in relation to the
gender identity of the patients [4-6]. Sexual dimorphism
is characteristic of nearly all anatomical structures
that form the LUT. However, there is a new hypotheti-
cal endocrine-autocrine-paracrine model of interactions
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between the urothelium, afferent and efferent nerve ter-
minals (neurothelium), vessels (endothelium), muscle
cells (myothelium), and myofibroblasts of all LUT struc-
tures. According to this model, all these structures con-
stitute a single anatomical and functional system, and its
elements are in constant interaction and interinfluence
with each other (Fig. 1) [7-11].

Sexual aspects of the LUT urothelium

The urothelium is a specialized epithelium that is lo-
cated in its connective tissue plate (lamina propria) and
lines the LUT inside in the form of 5-7 rows of cells rep-
resented by three layers. These layers appeared apical
(one layer of umbrella cells, which are in direct contact
with urine and serve as a physiological barrier between it
and underlying tissues), intermediate (2-3 layers of inter-
mediate cells), and basal (2-3 layers of basal cells) [12].
When the bladder is full, the umbrella cells stretch
and flatten, and when the bladder is empty, the cells
are cuboidal [13]. The umbrella cells of the superficial
urothelium got their name because, in 70%-90% of the
cases, peculiar outgrowths (plaques) are found on their
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Fig. 1. A hypothetical model of interactions between urothelial cells (urothelium), afferent and efferent nerve endings (neurothelium),
vessels (endothelium), smooth muscle cells and myofibroblasts of the lower urinary tract [10, 11]. NO - nitrogen oxide; AgP - ad-
renergic receptor; ATO - adenosine triphosphate; ALIX - acetylcholine; bp - bradykinin receptor; T'K[, - detrusor smooth muscle cell;
MP - muscarinic receptor; HuKP - nicotinic receptor; HP - neurokinin receptor; H3 - norepinephrine; 2P - purinergic receptor subtype 2;
M2X and N2Y - purinergic receptors of the X and Y subtypes; MMI" - prostaglandins; CI - substance R; TupKP - tyrosine kinase receptor
with high affinity for nerve growth factor; TPIK - transit receptor of potential channels; ®PH - nerve growth factor

Puc. 1. Tvnotetnyeckan Mofenb B3aWMOLENCTBUNA MeY YpOTenManbHbIMU KneTkamu (ypoTenvem), abpepeHTHbIMU U 3hdepeHTHbIMM
HEPBHbIMY OKOHYaHUAMM (HEMPOTENIMEM), COCYAaMM (3HAOTENMNEM), TaAKOMBILLEYHBIMU KNETKaMU 1 MUOGMOPOBIACTaMU HAMKHUX MOYEBBIX
nyte# [10, 11]. NO — okcup asota; AoP — ampeHeprisdeckuin peuentop; ATO — ageHosuHTpudocdat; AUX — auetunxonud; BP — 6pagu-
KuHMHOBbIM peuenTop; MK — rnagroMbiweyHan Knetka aetpysopa; MP — MyckapuHoBbid peuentop; HUKP — HUKOTMHOBGLIM peuenTop;
HP — HeMpokuHWHOBGLIM peuenTop; H3 — HopanuHedpuH; M2P — nypuHepruveckumid peuentop noatvna 2; M2X v N2Y — nypuHeprveckue
peuenTopbl noaTvnoB X 1 Y; MM — npoctarnangmubl; CM — cyberaHuma P; TupKP — TMPO3UHKMHA3HBIN PeLenTop € BbICOKOM adPUHHOCTLIO
K dakTopy pocTa Hepsos; TPITK — TpaH3uTHbIN peLienTop noTeHLManbHbIX KaHanos; ®PH — ¢gakTop pocta HepeoB
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membrane facing the lumen of the urinary tract, giving
the cells a “toothed” appearance and consisting of uro-
plakins that form macromolecular structures (hexagonal
shape), providing, along with tight junction proteins, the
barrier function of the urothelium [14].

Currently, several types of uroplakins have been
identified in the urothelium, namely, UP-la (molecular
weight, 27 kDa), UP-Ib (molecular weight, 28 kDa), UP-II
(molecular weight, 15 kDa), and UP-IIl (molecular weight,
47 kDa) [15-17]. Hu et al. [18] examined male and female
rats and found that the identification of UP-II in these
animals was associated with defective glycosylation,
smaller urothelial plaques of umbrella cells, and in-
creased their water permeability. Aboushwareb et al. [19]
revealed specific sex differences in UP-II- and UP-IIl-
knockout mice. Thus, male mouse knockout of UP-II
showed signs of functional bladder decompensation,
presenting as a decrease in effective pressure and an
increase in residual urine. In female rats with the same
knockout, no changes were detected. A study of the
excitability of detrusor myocytes in uroplakin-knock-
out mice revealed sex differences, where female rats
showed decreased excitability, while male ones showed
no changes in myocyte excitability [19]. These data con-
firmed that uroplakin deficiency in the urothelium can
induce bladder dysfunction.

In addition to its barrier function, the urothelium
performs the most important sensory function, as it
contains numerous ion channels and regulatory pro-
teins of various receptors (i.e., adenosinergic, puriner-
gic, adrenergic, bradykinin, neurokinin, muscarinic, and
cholinergic), which ensure the interaction of urothelial
cells with each other and unites them into a single func-
tional system [20, 21]. The urothelium releases various
small molecules and neurotransmitters in response to a
mechanical or chemical stimulus. In addition, because
the urothelium contains specialized acid-sensitive ion
channels, it maintains a constant pH level and controls
bladder sensitivity. The expressions of ASIC1 are more
pronounced in male rats, while that of ASIC2 is more
pronounced in female ones [22]. Although the impaired
expression of ASIC1 channels in the intestine decreases
its mechanical sensitivity, the functional consequences
of this difference in the expression of these channels in
the urinary bladder remain unknown [23].

The urothelium of the urinary bladder also plays an
important role in the innate immune response when
uropathogens are detected, and the higher incidence of
LUT infections in women suggests a significant regula-
tory role of estrogen in this process. Studies on female
mice and urothelial tissues of women have shown that
estrogens mediate the defense mechanisms of the uro-
thelium against Escherichia coli by regulating the activity
of type B (ER-B) estrogen receptors identified in the uro-
thelium; therefore, ER-B plays an important role in the
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pathogenesis of inflammatory diseases of the bladder in
women [24-26].

Recent studies have revealed that high-conductivity
potassium channels (BK channels) in the umbrella cells
of the surface urothelial layer are regulated by calcium
and lipopolysaccharides [27, 28]. A study suggested a re-
lationship between the activity of urothelial BK channels
and the expression of estrogen receptors, i.e., ER-f type,
in the implementation of the urothelial innate immune
response in LUT infections in women, whereas estra-
diol increases the expression of BK channels, and the
blockade of its effects led to the opposite effect in an
experimental mouse model of oophorectomy [29].

Myothelial sexual dimorphism of the LUT

Detrusor. The normal bladder is a reliable reservoir
controlled by the nervous system for storing urine and its
periodical emptying. It represents a complex of smooth
muscle elements combined into a single functional syn-
cytium [30, 31]. The detrusor muscle is thicker in men
than in women because more pressure is required to
empty the bladder through the longer male urethra [32].
The ratio between the smooth muscles and connective
tissues in the detrusor is not different in women and men
of any age, and studies have shown that the contrac-
tile ability of the human detrusor is independent of sex
[12, 33].

The human bladder can be detected as early as week 10
of intrauterine development. Although the trigone is be-
lieved to be of mesodermal origin, the rest of the bladder
originates from the endoderm; some studies have shown
that the trigone also has an endodermal origin [34].
Favorito et al. [35] evaluated morphological differences
in the detrusor smooth muscle of women and men and
did not find differences in the volumetric density of fe-
tal nerves, smooth muscle cells, or collagen at weeks
13-20 after conception [35].

Urethra. The muscle layer of the urethra contains
oblique and longitudinal muscle fibers surrounded by
circular fibers in both women and men. The muscular
layer provides basic resistance to urine flow, which is
further enhanced by the rich vascularization of the ure-
thra [36]. In addition, a1l and a2 adrenergic receptors,
consisting of several subtypes and regulating the con-
tractility of smooth myocytes, contribute to the functions
of the urethra in both sexes. Male rabbits have the same
number of al and a2 adrenergic receptors, but female
rabbits have a much higher density of a2 adrenergic re-
ceptors [37]. Alexandre et al. [38] examined the effect
of various agonists and antagonists on urethral smooth
muscles and revealed that phenylephrine, norepineph-
rine, potassium chloride, and stimulation with an elec-
tric field caused stronger muscle contractions in men.
However, no sex differences were noted in response
to the administration of N-nitro-L-arginine, atropine,
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or a P2X1-purine receptor antagonist. The expressions
of the RNAs of alA-adrenergic receptor and tyrosine hy-
droxylase in the urethra were significantly higher in men
than in women. Therefore, al-adrenergic receptors may
not be very important for the contraction and functional-
ity of the urethra in women [38].

Oswald et al. [39] studied the intrauterine develop-
ment of the internal urethral sphincter in 37 human fe-
tuses and found that the volume of the internal sphincter
is significantly greater in male fetuses than in female
fetuses, which is partially caused by muscular hypertro-
phy and leads to a decrease in the urethral lumen [39].
This may be due to transient urethral obstruction dis-
tal to the bladder neck during the hormone-dependent
growth stimulation, particularly by testosterone, in men.
Jin et al. [40] showed that the differentiation of smooth
muscle cells in the bladder and urethra is crucial in the
development of mesonephric duct prolapse during intra-
uterine fetal development [40].

The striated musculature provides pelvic floor sup-
port and coordinates urinary initiation and bladder emp-
tying. The architecture of the striated muscles in the
detrusor and urethra coincides with the arrangement of
muscle fibers and connective tissues [41, 42]. Striated
muscle fibers have two types, namely, slow contraction
(type 1) and fast contraction (type Il) muscle fibers [43].
Type | fibers have more acid-resistant ATPases, more
mitochondria, thicker Z-disks, higher amounts of oxida-
tive enzymes, and a contraction time of approximately
100 ms. Type Il fibers have a higher concentration of
alkali-resistant ATPases, fewer mitochondria, and a con-
traction time of approximately 30 ms [43, 44]. The fiber
type of striated muscles affects their susceptibility to
damage and repair and varies by sex. In rats, the female
and male urethras differ macro- and microscopically.
In contrast to typical skeletal muscles, the myofibrils of
the female urethral sphincter are 3-5 times smaller in
diameter than the striated pelvic floor muscles because
these cells lack peripheral nuclear localization [45].
Instead, the nuclei of myocytes are located in the center,
with sizes similar to the diameter of the fibril. Unlike
other skeletal muscles, these cells have no attachment
points and are in direct contact with the adjacent con-
nective tissue [46]. Similar to skeletal muscles, the stri-
ated musculature of the rat urethra expresses desmin
and dystrophin; desmin runs orthogonally to Z-shaped
lines, outlining sarcomeres, while dystrophin is loca-
lized in the sarcolemma of myocytes in female rats [45].
In male rats, two longitudinal bands of connective tis-
sue segment the sphincter into two lateral bundles, and
myofibrils do not form myotendinous connections with
adjacent connective tissue. The striated elements of the
sphincter form a longitudinal thick layer visible in male
rats, while the sphincter is thin and more rounded in
female rats [46]. Bierinx et al. [47] found two types of
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myofibrils in the urethra of male rats, which were char-
acterized predominantly by type Il “fast” fibers, similar
to female rats; however, individual fibers taken near the
urethral lumen contained slow contraction myofibrils
(type I). In addition to the bladder neck, striated muscles
are located in the middle part of the urethra, and re-
cent studies using immunohistochemical methods have
shown that rapid-contraction muscle fibers predominate
among the fibers [48]. Chen et al. [49] identified fast con-
traction fibers in the proximal urethra in male rats.

In humans, the structure of the muscular apparatus
of the urethra is significantly different between men and
women. When using histochemical methods and elec-
tron microscopic analysis of samples obtained using
cystourethrectomy, Gosling et al. [44] identified type |
muscle fibers of 15-20 pym in diameter (slow contrac-
tion fibers) in the urethra of both men and women and
muscle fibers of both types in m. levator ani 3. Other
authors revealed that striated muscles of the female
urethra consist mainly of type | fibers [50-52], while the
striated muscles extend from the male urethra through
the prostate and consist of both slow and fast fibers of
various diameters; however, its functional significance
remains unknown [53, 54]. In humans, the identification
of nitrergic nerve fibers in rhabdosphincter suggests that
nitric oxide (NO) plays an important role in the control of
striated muscles in the urethra, regulating their relax-
ation and contractility [55-57]. Ho et al. [53] showed the
presence of NO synthases (NOS) in 86% of fast muscle
fibers and in 29% of slow muscle fibers in the sarco-
lemma of myocytes of the male urethra [53].

Urogenital pelvic diaphragm. The pelvic floor mus-
culature supports the abdominal and pelvic organs and
regulates the mechanisms of the retention of feces and
urine [58]. The muscular components of the pelvic floor
include the levator muscles and coccygeal muscle [59].
M. levator ani contains a heterogeneous population of
type | and Il muscle fibers, but histological studies have
shown a predominance of type | fibers, which clinically
correlates with the static nature of the pelvic floor and
its role in maintaining the internal organs of the abdomi-
nal cavity and pelvis [44]. A smaller population of type Il
fibers supports the pelvic floor during periods of in-
creased abdominal pressure, and the number and diam-
eter of these fibers decrease with age. However, their
proportions are not different between men and women
[60, 61]. Tobin et al. [62] found that the m. levator ani of
a rat embryo exhibits sexual dimorphism; during ante-
natal development, male embryos contain significantly
fewer motor units (153 versus 350), and each unit has a
relatively smaller cross-sectional area (89.2 pm? versus
120.8 pm?) compared with that in female fetuses. With
the postnatal development of rats, the cross-sectional
area of the motor units decreased slightly in both sexes,
but the number of motor units in male rats increased
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rapidly to 2726 by day 6 after birth, which is caused by
the influence of testosterone [62]. In their experimen-
tal studies, Niel et al. [63] showed that satellite cells
(a population of myogenic stem cells) located on the pe-
riphery of the pelvic floor muscle fibers are influenced
by androgens and can play a role in sexual dimorphism.
Thus, the number of satellite cells in m. levator ani of
newborn male rats was higher than that in newborn
females. With prenatal exposure to testosterone, the
number and size of satellite muscle cells in female rats
increased; therefore, sex differences in muscle tissue
found in developing rats are due to sexual dimorphism in
satellite cells sensitive to androgens [63]. These animal
studies are consistent with a study that analyzed sex dif-
ferences in human fetuses and showed that, during de-
velopment, m. levator ani forms as a thick muscle layer
in boys, while it is a thin muscle in girls, and its bundles
are integrated with connective tissue [64].

Sex characteristics of the regulation
of endothelial function and blood supply
to the LUT in terms of age

The endothelium mainly helps in maintaining vas-
cular homeostasis by synthesizing and secreting sub-
stances involved in the expansion (vasodilators) and
narrowing (vasoconstrictors) of the vessels. Progres-
sive endothelial dysfunction, as one of the aspects of
vascular aging, has been identified as a key initiat-
ing stage in the pathogenesis of atherosclerosis [65].
Endothelial function is controlled by several factors that
differ in men and women, and it is associated with the
expression of sex hormone receptors in the endothe-
lium, which have a major effect on endothelial metabo-
lism and consequently on the tone of the vascular wall
and regional blood flow [65]. Thus, differences in the
reaction of blood flow to the infusion of intraperitoneal
acetylcholine in men and women have been established.
In particular, in normotensive premenopausal women,
acetylcholine-mediated vasodilation slightly decreased
(by approximately 0.5% annually); however, disorders
of endothelium-dependent vasodilation became evident
only after menopause, in which the response to acetyl-
choline decreased faster (2.1% per year). In women, no
sex differences in smooth muscle function response to
sodium nitroprusside administration were noted, which
confirmed the effect of menopause on endothelium-de-
pendent rather than endothelium-independent vasodila-
tion [66]. The well-known consequences of menopause
on LUT are united by the term “genitourinary menopausal
syndrome,” which includes the following conditions: de-
creased volume and speed of blood circulation in LUT
structures, thinning of the mucous membranes and uro-
thelium, decreased bactericidal and barrier function of
the urothelium, hypoxia, ischemia, and fibrosis in pelvic
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organs, which increase significantly the risk of vulvo-
vaginal and cystourethral atrophic changes [67]. In wom-
en of reproductive age, due to cyclical changes in sex
hormones during the menstrual cycle, the same cyclical
changes in the blood flow of the LUT are observed, i.e.,
from the main pronounced arterial blood flow in phase 1
of the cycle (estrogen effects) to its minor decrease and
development of the veno-discirculatory phenomena in
the small pelvis in phase 2 (effects of progesterone).
Moreover, cyclical changes in estrogen and progesterone
levels in women are associated with increased severity
of LUT symptoms (LUTS) immediately before menstrua-
tion [67]. Moderately obese postmenopausal women may
be more susceptible to endothelial dysfunction than men
and postmenopausal women without moderate obesity,
whether or not they have type 2 diabetes mellitus [68].
In addition, the length of the urethra in women increases
in the middle of the menstrual cycle at the peak of the
effect of estrogen [69]. By contrast, in men with normal
blood pressure levels, acetylcholine-induced vasodila-
tion decreased with age (approximately 1.8% per year),
which coincided with the average rate of the decrease in
the level of testosterone secretion in men. This may indi-
cate the role of testosterone in the synthesis of NO in the
vascular endothelium and its pronounced vasoprotective
effect. Numerous clinical and experimental studies have
shown a significant relationship among low testosterone
levels, pelvic atherosclerosis, ischemia, and fibrosis of
the LUT in men [70-72].

The total area of the pelvic arterial bed in both men
and women is significantly lower than the total density of
all venous collectors, which determines a high frequency
of the formation of venous congestion in this anatomical
region with the involvement of the LUT in the process,
often simulating urological pathology [73]. Moreover, in
men, a relationship is found between the density of the
vascular bed of the small pelvis and the blood flow rate
in it and the level of testosterone [74]. According to re-
cent reviews and meta-analyses, men with moderate-to-
severe LUTS are at increased risk of most cardiovascu-
lar complications, and endothelial dysfunction connects
them (Fig. 2) [75, 76].

Sex characteristics of pain reception in the LUT

The LUT has extensive innervation, represented by
mixed, sensory, and motor autonomic nerve endings
(sympathetic and parasympathetic) and motor somatic
nerve fibers. Currently, sexual dimorphism in relation to
the characteristics of pain reception and perception in men
and women is well known, which leads to the conclusion
that sex steroid hormones are indirectly involved in their
mechanisms. Traditionally, estrogens are believed to be
pro-pain hormones, and progesterone and testosterone
are anti-pain hormones; therefore, evolutionarily, men
are more resistant to acute and chronic pain [77, 78],
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Fig. 2. Scheme of the relationship between endothelial dysfunction and lower urinary tract dysfunction in men [76]
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and women often have low pain tolerance [79-81].
A study showed differences between men and women
in terms of how they recall the pain experience. Unlike
women, men showed increased hypersensitivity to pain
under the same painful experiences, and this may be
mediated by decreased testosterone levels [82]. Studies
analyzing sex differences in people with delayed muscle
pain have not reported any significant sex differences [83].
A study of muscle pain induced by saline administration
led to an increase in pressure point thresholds in men
but not in women [84]. In an endotoxemia model, one
of the ways to induce widespread inflammatory pain,
a decrease in the initial pain thresholds of pressure in
women was detected, but without sex differences after
the development of inflammation [85]. The change in pain
perception can be caused by various factors, in particu-
lar, age. Moreover, no differences in sensitivity to pain
were found between older men and women [86], in con-
trast to the results in young adults [87]. From a mecha-
nistic point of view, variations in pain perception may be
associated with differences in brain activation patterns
caused by muscle pain, since significant changes in sig-
nal intensity in the middle cingulate cortex and dorsolat-
eral prefrontal cortex occur in a sex-dependent dimorphic
pattern, which indicates important sex differences in the
emotional perception of pain [88]. In diseases or injuries,
muscle tissue releases various metabolites, cytokines,
and growth factors, which can be accompanied by the
infiltration of immune cells. These signals are combined
with differential gene expression patterns and receptor
interactions in both men and women. In the spinal cord,
the increased signals from muscle afferents are possibly
modulated by the increased immune reactivity of microg-
lia in men and T cells in women. The perception of pain in
the brain may also depend on sex-specific psychological
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and emotional factors and may be accompanied by pain
sensations in men, unlike those in women [89] (Fig. 3).

Sex differences have been found in healthy people
and patients with chronic muscle pain; however, more
research is required to elucidate the mechanisms under-
lying these phenomena.

Characteristics of the hormonal regulation
of the LUT in sex and age aspects

Estrogen, progesterone, and testosterone receptors
are present in the urinary tract of both sexes. The regu-
latory mechanisms of the expression of sex hormone re-
ceptors differ with age [90-94]. In female and male mice,
myocytes and fibroblasts of the lamina propria of the ure-
thral wall have a high density of estrogen receptors such
as a (ER-a) and B (ER-B), progesterone receptors (PR),
and androgen receptors [95]. In men, the striated muscle
cells of the rhabdosphincter showed expression of an-
drogen receptors, estrogen receptors of ER-B, and PR; in
women, the expressions of ER-a receptors are predomi-
nantly associated with PR [95]. Moreover, experimental
knockout of ER-a receptors in the LUT of female mice
led to a decrease in several PR-positive cells in the ure-
thra, which suggests that ER-a modulate PR expression
in the female urethra; however, the expression disor-
ders of neither ER-a nor ER-B changed the PR expres-
sion in the male urethra [95]. Cells expressing ER-B and
PR receptors are found in the urethral epithelium, while
ER-B* cells are detected in the epithelium of the urinary
bladder and detrusor of both sexes [96]. In humans, the
expression of ER-B receptors was only found in the uro-
thelium of the female urinary bladder [97].

In female rabbits, injections of progesterone or tes-
tosterone decreased the capacity and compliance of the
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Fig. 3. Gender characteristics of the pathogenesis of muscle pain [89]. TRPV1 - transient receptor potential of vanilloid type 1;
P2X3 - type 3 adenosine receptor; P2X5 - type 5 adenosine receptor; ASIC3 - type 3 acid-sensitive ion channel
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bladder, whereas estrogen treatment increased them.
In male rabbits, testosterone or estrogen injections in-
crease significantly the bladder capacity, but proges-
terone treatment has no effect [98]. Numerous clinical
studies have shown that testosterone therapy in men has
significant positive direct and indirect effects on nearly all
LUT structures, including the vascular endothelium, neu-
rothelium, muscle structures, and urothelium [99, 100].

The indirect effect of testosterone on the

LUT is due to

several mechanisms, such as the regulation of neurons of
the autonomic nervous system and the activity of cellular
enzymes of Rho kinase and phosphodiesterase type 5.
In addition, testosterone activates endothelial NOS in the

pelvis, which can lead to vasodilation and

relief of pelvic

ischemia. Bladder blood flow is often reduced in patients
with LUTS, and decreased blood flow in the bladder and
aging-induced ischemia are associated with the devel-
opment of anatomical and functional disorders in the
detrusor [101-103]. In a laboratory model of testoster-
one deficiency in male rats, Zhang et al. [104] revealed

the rapid development of fibrosis of the

bladder wall,

which led to a decrease in the volume and contractil-

ity of the bladder and an increase in the
procollagen | mRNA, which is one of the
of age-related fibrosis.
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