Neural Network Modeling of Electromagnetic Prediction of Geothermal Reservoir Properties

Cover Page

Cite item

Full Text

Abstract

This work conducts neural network modeling of temperature, thermal conductivity, and permeability predictions for depths greater than those drilled, as well as for the immediate vicinity of the exploratory borehole. For this purpose, we use data from three boreholes drilled earlier in the Soultz-sous-Forêts geothermal site (France) and the results of the magnetotelluric sounding performed there. It is shown that the relative accuracy of the predictions depends significantly on the relationship between the depth of the drilled borehole and the target depth of the prediction. For instance, for all the examined parameters, prediction errors become less than 5% if the prediction is made for depths that do not exceed the borehole depth by more than two times. In this case, the average errors of temperature and thermal conductivity predictions for the vicinity of the drilled borehole were 3.6% and 6%, respectively. The obtained results justified a new scheme for predicting the thermophysical and porosity/permeability properties of rocks while drilling exploratory geothermal boreholes.

About the authors

V. V. Spichak

Geoelectromagnetic Research Center of Schmidt Institute of Physics of the Earth
of the Russian Academy of Sciences

Author for correspondence.
Email: v.spichak@mail.ru
Russia, Moscow

O. K. Zakharova

Geoelectromagnetic Research Center of Schmidt Institute of Physics of the Earth
of the Russian Academy of Sciences

Author for correspondence.
Email: okzakharova@mail.ru
Russia, Moscow

References

  1. Дучков А.Д., Соколова Л.С., Аюнов Д.Е., Злобина О.Н. Теплопроводность пород осадочного чехла арктической части Западной Сибири // Геология и геофизика. 2013. Т. 54. № 12. С. 1952–1960.
  2. Дучков А.Д., Шварцман Ю.Г., Соколова Л.С. Глубинный тепловой поток Тянь-Шаня: достижения и проблемы // Геология и геофизика. 2001. Т. 42. № 10. С. 1512–1529.
  3. Подгорных Л.В., Хуторской М.Д., Грамберг И.С., Леонов Ю.Г. Трехмерная геотермическая модель Карского шельфа и прогноз нефтегазоносности // Докл. РАН. 2001. Т. 380. № 2. С. 228–232.
  4. Поляк Б.Г., Толстихин И.Н., Якуцени В.А. Изотопный состав гелия и тепловой поток – геохимический и геофизический аспекты тектогенеза // Геотектоника. 1979. № 5. С. 3–23.
  5. Спичак В.В. Электромагнитная томография земных недр. М.: Научный мир. 2019. 376 с.
  6. Спичак В.В., Захарова О.К. Электромагнитный геотермометр. М.: Научный мир. 2013. 170 с.
  7. Спичак В.В., Захарова О.К. Электромагнитный прогноз проницаемости вне скважин // Геофизические исследования. 2022. Т. 23. № 2. С. 18-38. https://doi.org/10.21455/gr2022.2-2
  8. Хайкин С. Нейронные сети. 2-е изд., испр.: Пер. с англ. М.: ООО “И. Д. Вильямс”. 2006. 1104с.
  9. Шварцман Ю.Г. Тепловое поле, сейсмичность и геодинамика Тянь-Шаня. Автореферат дис. докт. геол.-мин. наук. Бишкек: ИГАНРК. 1992. 38 с.
  10. Aminian K., Ameri S. Application of artificial neural n,etworks for reservoir characterization with limited data // J. Pet. Sci. Eng. 2005 V. 49(3–4). P. 212–222.
  11. Arnorsson S., Gunnlaugsson E. New gas geothermometers for geothermal exploration-calibration and application // Geochimica et Cosmochimica Acta. 1985. V. 49. № 6. P. 1307–1325.
  12. Bhatt A., Helle H.B. Committee neural networks for porosity and permeability prediction from well logs // Geophys. Prosp. 2002. V. 50. P. 645–660.
  13. Dezayes C., Genter A., Hooijkaas G. Deep-seated geology and fracture system of the EGS Soultz reservoir (France) based on recent 5km depth boreholes. Proc. World Geothermal Congress. Antalya. Turkey. 2005.
  14. Dezayes C., Genter A., Valley B. Structure of the low permeable naturally fractured geothermal reservoir at Soultz // Comptes Rendus Géoscience, 2010. V. 343(7–8). P. 517–530.
  15. Díaz-Curiel J., Biosca B., Miguel M.J. Geophysical Estimation of Permeability in Sedimentary Media with Porosities from 0 to 50% // Oil & Gas Science and Technology – Rev. IFP Energies Nouvelles. 2016. V. 71. P. 27–44.
  16. Evans K.F., Kohl T., Hopkirk J., Rybach L. Studies of the Nature of Non-linear Impedance to Flow within the Fractured Granitic Reservoir at the European Hot Dry Rock Project site at Soultz-sous-Forêts, France. ETH Zurich report-Polydynamics Engineering. Institut f¨ur Geophysik. Zurich. Switzerland. 1996. P. 144.
  17. Geiermann J. 2-D magnetotelluric sounding and modeling at the geothermal site Soultz-sous-Forêts. Dipl. Phys., J. Gutenberg Universitat. Mainz. Germany. 2009. 98 p.
  18. Genter A., Castaing C., Dezayes C., Tenzer H., Traineau H., Villemin T. Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France) // J. Geophys. Res. 1997. V. 102. B7. 15. P. 419–431.
  19. Genter A., Evans K., Cuenot N., Fritsch D., Sanjuan B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS) // C. R. Geoscience. 2010. V. 342. P. 502–516.
  20. Genter A., Fritsch D., Cuenot N., Baumgärtner J., Graff J-J. Overview of the current activities of the European EGS Soultz project: from exploration to electricity production. Proc. Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford University. Stanford. California. 2009.
  21. Geraud Y., Rosener M., Surma F., Place J., Le Garzic E., Diraison M. Physical properties of fault zones within a granite body: Example of the Soultz-sous-Forêts geothermal site // Comptes Rendus Geoscience. 2010. V. 342. P. 566–574.
  22. Harvey C.C., Browne P.R.L. Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand // Clay and Clay Minerals. 1995. V. 39. P. 614–621.
  23. Heap M.J., Kushnir A.R.L., Gilg H.A., Violay M.E.S., Harlé P., Baud P. Petrophysical properties of the Muschelkalk from the Soultz‑sous‑Forêts geothermal site (France), an important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben // Geothermal Energy. 2019. P. 7–27.
  24. Helle H.B., Bhatt A., Ursin B. Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study // Geophys. Prospect. 2001. V. 49. P. 431–444.
  25. Huang Z., Shimeld J., Williamson M., Katsube J. Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada // Geophysics. 1996. V. 61 (2). P. 422–436.
  26. Kharaka Y.K., Mariner R.H. Chemical geothermometers and their application to formation waters from sedimentary basins / Naeser N.D., McCulloch T. (eds.) Thermal History of Sedimentary Basins, S.C.P.M. Special issue. Springer Verlag. 1989. P. 99–117.
  27. Katz A.J., Thompson A.H. Quantitative prediction of permeability in porous rock // Phys. Rev. B Condens. Matter 1986. V. 34(11). P. 8179–8181. https://doi.org/10.1103/physrevb.34.8179
  28. Kushnir A.R.L., Heap M.J., Baud P. Assessing the role of fractures on the permeability of the Permo-Triassic sandstones at the Soultz-sous-Forêts (France) geothermal site // Geothermics. 2018. V. 74. P. 181–189.
  29. Lim J. Reservoir permeability determination using artificial neural network // J. Korean Soc. Geosyst. Eng. 2005. V. 40. P. 232–238.
  30. Ma S., Morrow N.R. Relationships Between Porosity and Permeability for Porous Rocks. SCA Conference. 1996. Paper Number 9610.
  31. Ollinger D., Baujard C., Kohl T. and Moeck I. 3-D Temperature Inversion Derived From Deep Borehole Data in the Northeastern German Basin // Geothermics. 2010. V. 39. P. 46–58.
  32. Polyak B.G., Tolstikhin I.N. Isotopic composition of the Earth’s helium and the motive forces of tectogenesis // Chem. Geology. 1985. V. 52. P. 9–33.
  33. Pribnow D., Engelking U., Schellschmidt R. Temperature prediction for the HDR Project at Soutz-sous-Forêts. GGA tech. rpt. №115869. Hannover. 1997. 10 p.
  34. Rodi W., Mackie R.L. Nonlinear conjugate gradient algorithm for 2D magnetotelluric inversion // Geophysics. 2001. V. 66(1). P. 174–187.
  35. Sausse J., Dezayes, C., Dorbath L., Genter A., Place J. 3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles // Comptes Rendus Geoscience. 2010. V. 342. P. 531–545.
  36. Spichak V.V. A new strategy for exploration drilling based on using of an electromagnetic sounding data. Expanded Abstr. Int. Workshop on High Entalphy Geothermal Systems San-Bernardino. California. 2013.
  37. Spichak V.V. Reduce exploration drilling costs: pourquoi pas?! Expanded Abstr. D-GEO-D Conference. Paris. France. 2014.
  38. Spichak V.V. Advances in electromagnetic techniques for exploration, prospecting, and monitoring of hydrocarbon deposits // First Break. 2018. V. 36(10). P. 75–81.
  39. Spichak V.V., Geiermann J., Zakharova O., Calcagno P., Genter A., and Schill E. Estimating deep temperatures in the Soultz-sous-Forêts geothermal area (France) from magnetotelluric data // Near Surface Geophysics. 2015. V. 13(4). P. 397–408.
  40. Spichak V.V., Manzella A. Electromagnetic sounding of geothermal zones // J. Appl. Geophys., 2009. V. 68. P. 459–478.
  41. Spichak V.V., Zakharova O. The application of an indirect electromagnetic geothermometer to temperature extrapolation in depth // Geophys. Prospect. 2009. V. 57. P. 653–664.
  42. Spichak V.V., Zakharova O.K., Rybin A.K. Methodology of the indirect temperature estimation basing on magnetotelluruc data: northern Tien Shan case study // J. Appl. Geophys. 2011. V. 73. P. 164–173.
  43. Urang J.G., Ebong E.D., Akpan A.E., Akaerue E.I. A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: A case study of Niger Delta, Nigeria // J. Appl. Geophys. 2020. V. 183. P. 1–14.
  44. Verma K.A., Cheadle A.B., Routray A., Mohanty K.W., Mansinha L. Porosity and Permeability Estimation using Neural Network Approach from Well Log // Geoconvention Vision. Canada. 2012.
  45. Vidal J., Genter A. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells // Geothermics. 2018. V. 74. P. 57–73.
  46. Vidal J., Genter A., Chopin F. Permeable fracture zones in the hard rocks of the geothermal reservoir at Rittershoffen, France // J. Geophys. Res. Solid Earth. 2017. V. 122(7). P. 4864–4887.
  47. Vidal J., Genter A., Duringer P., Schmittbuhl J. Natural Permeability in Fractured Triassic Sediments of the Upper Rhine Graben from Deep Geothermal Boreholes. World Geothermal Congress. Melbourne. Australia. Expanded Abstracts. 2015a.
  48. Vidal J., Genter A., Schmittbuhl J. How do permeable fractures in the Triassic sediments of Northern Alsace characterize the top of hydrothermal convective cells? Evidence from Soultz geothermal boreholes (France) // Geothermal Energy. 2015b. V. 3(8). https://doi.org/10.1186/s40517-015-0026-4
  49. Vuataz F.-D., Brach M., Criaud A., Fouillac C. Geochemical monitoring of drilling fluids: a powerful tool to forecast and detect formation waters // SPE Formation Evaluation. 1990. P. 177–184.
  50. Wang B., Wang X., Chen Z. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network // Comput. Geosci. 2013. V. 57. P. 1–10.

Supplementary files


Copyright (c) 2023 Russian Academy of Sciences