On the Statistical Significance Test for the Procedure of Polarity Classification by Types of Acoustic Emission Sources

封面

如何引用文章

全文:

详细

Using a mathematical statistics approach, we review the procedure for type classification of acoustic emission (AE) events into shear, tension, and collapse, proposed by Zang et al. (1998). The procedure is based on counting the signs of first pulses of waves arriving at acoustic sensors and is widely used in rock physics experiments. Under the assumption that the determination errors of first-pulse signs at sensors have uniform and independent distribution, the statistical significance and power of the type separation test are evaluated for a given number of sensors used. We consider and compare three methods of the construction of a statistical test based on the P-value approach and symmetric and asymmetric statistical hypothesis tests. Considering the results of the statistical study, we propose some practical recommendations for selecting a threshold to classify AE event types in experimental studies.

作者简介

V. Smirnov

Faculty of Physics, Moscow State University; Schmidt Institute of Physics of the Earth, Russian Academy of Science

编辑信件的主要联系方式.
Email: vs60@mail.ru
119991 Russia, Moscow; 123242 Russia, Moscow

A. Isaeva

Faculty of Physics, Moscow State University

Email: vs60@mail.ru
119991 Russia, Moscow

T. Kartseva

Schmidt Institute of Physics of the Earth, Russian Academy of Science

Email: vs60@mail.ru
123242 Russia, Moscow

A. Patonin

Geophysical Observatory “Borok,” Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: vs60@mail.ru
152742 Russia, Borok

N. Shikhova

Geophysical Observatory “Borok,” Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: vs60@mail.ru
152742 Russia, Borok

A. Ponomarev

Schmidt Institute of Physics of the Earth, Russian Academy of Science

Email: vs60@mail.ru
123242 Russia, Moscow

参考

  1. Abubakirov I.R., Pavlov V.M. Determining the Double Couple Moment Tensor for Kamchatka Earthquakes from Regional Seismic Waveforms // Izv., Phys. Solid Earth. 2021. V. 57. P. 332–347. https://doi.org/10.1134/S1069351321030010
  2. Aki K., Richards P.G. Quantitative Seismology. Univ. Science Books. 2002. 685 p.
  3. Amrhein V., Korner-Nievergelt F., Roth T. The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research // Peer J. 2017. V. 5. P. e3544. https://doi.org/10.7717/peerj.3544
  4. Borovkov A.A. Mathematical Statistics. Gordon and Breach Publishers. Amsterdam. 1998. 478 p.
  5. Charalampidou E.M., Stanchits S., Kwiatek G., Dresen G. Brittle failure and fracture reactivation in sandstone by fluid injection // Eur. J. Environ. Civ. Eng. 2015. https://doi.org/10.1080/19648189.2014.896752
  6. Clarke J., Adam L., Sarout J., van Wijk K., Kennedy B., Dautriat J. The relation between viscosity and acoustic emissions as a laboratory analogue for volcano seismicity // Geology. 2019. V. 47. P. 499-503. https://doi.org/10.1130/G45446.1
  7. D’Amico S. Moment tensor solutions: A useful tool for seismotectonics / D’Amico S. (ed.). Springer. 2018. 752 p.
  8. Dreger D.S. Berkeley Seismic Moment Tensor Method, Uncertainty Analysis, and Study of Non-double-couple Seismic Events / D’Amico S. (ed.). Moment Tensor Solutions. Springer Natural Hazards. Springer, Cham. 2018. https://doi.org/10.1007/978-3-319-77359-9_4
  9. Emanov A.F., Emanov A.A., Chechel’nitskii V.V. et al. The Khuvsgul Earthquake of January 12, 2021 (MW = 6.7, ML = 6.9) and Early Aftershocks // Izv. Phys. Solid Earth. 2022. V. 58. P. 59–73. https://doi.org/10.1134/S1069351322010025
  10. Everitt B., Skrondal A. The Cambridge dictionary of statistics. Cambridge University Press. Cambridge. 2002. 106 p.
  11. Fortin J., Stanchits S., Dresen G., Gueguen Y. Acoustic Emissions Monitoring during Inelastic Deformation of Porous Sandstone: Comparison of Three Modes of Deformation // Pure Appl. Geophys. 2009. V. 166. P. 823–841. https://doi.org/10.1007/s00024-009-0479-0
  12. Graham C.C., Stanchits S., Main I.G., Dresen G. Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data // Int. J. Rock. Mech. Min. Sci. Oxford, 2010. V. 47. P. 161–169.
  13. Kanamori H. Earthquake Seismology: Treatise on Geophysics / Kanamori H. (ed.). Elsevier. 2009. 653 p.
  14. Kolář P., Petružálek M., Lokajíček T., Šílený J., Jechumtálová Z., Adamová P., Boušková A. Acoustic emission events interpreted in terms of source directivity // Pure Appl Geophys. 2020. V. 177. P. 4271–4288. https://doi.org/10.1007/s00024-020-02517-w
  15. Kostrov B.V., Das S. Principles of Earthquake Source Mechanics. Cambridge Univ Press. 2005. 286 p.
  16. Kwiatek G., Charalampidou E.M., Dresen G., Stanchits S. An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle // Int. J. Rock. Mech. Min. Sci. 2013. V. 65. P. 153–161. https://doi.org/10.1016/j.ijrmms.2013.11.005
  17. Lei X.L., Nishizawa O., Kusunose K., Satoh T. Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes // Journal of Physics of the Earth. 1992. V. 40. P. 617–634. https://doi.org/10.4294/jpe1952.40.617
  18. Naoi M., Chen Y., Yamamoto K., Morishige Y. et al. Tensile-dominant fractures observed in hydraulic fracturing laboratory experiment using eagle ford shale // Geophysical J. International. 2020. V. 222(2). P. 769–780. https://doi.org/10.1093/gji/ggaa183
  19. Ohtsu M. Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test // J Geophys Res. 1991. V. 96 (B4)7. P. 6211–6221. https://doi.org/10.1029/90JB02689
  20. Ohtsu M. Source Mechanisms of AE. Acoustic Emission Testing / Grosse C., Ohtsu M. (eds.). Berlin, Heidelberg, Springer. 2008a. P. 149–174. https://doi.org/10.1007/978-3-540-69972-9_7
  21. Ohtsu M. Moment Tensor Analysis. Acoustic Emission Testing / Grosse C., Ohtsu M. (eds.). Berlin, Heidelberg, Springer. 2008b. P. 175–200. https://doi.org/10.1007/978-3-540-69972-9_8
  22. Ohtsu M., Isoda T., Tomoda Y. Acoustic emission techniques standardized for concrete structures // J Acoustic Emission. 2007. V. 25. P. 21–32.
  23. Patonin A.V., Ponomarev A.V., Smirnov V.B. A laboratory instrumental complex for studying the physics of the destruction of rocks // Seismic instruments. 2014. V. 50. P. 9–19. https://doi.org/10.3103/S0747923914010046
  24. Patonin A.V., Shikhova N.M. Variations of types of acoustic emission signals during the destruction of rocks in a laboratory experiment. The nineteenth international conference “Physical-Chemical and petrophysical researches in the Earth’s sciences”. Proceedings of the conference. Moscow. 2018. P. 254–256.
  25. Petružálek M., Jechumtálová Z., Kolář P., Adamová P., Svitek T., Šílený J., Lokajíček T. Acoustic emission in a laboratory: mechanism of microearthquakes using alternative source models // J Geophys Res. Solid Earth. 2018. V. 123(6). P. 4965–4982. https://doi.org/10.1029/2017JB015393
  26. Petružálek M., Jechumtálová Z., Šílený J., Kolář P., Svitek T., Lokajíček T., Turková I., Kotrlý M., Onysko R. Application of the shear-tensile source model to acoustic emissions in Westerly granite // Int. J. Rock. Mech. Min. Sci. 2020. V. 128. https://doi.org/10.1016/j.ijrmms.2020.104246
  27. Petružálek M., Lokajíček T., Svitek T., Jechumtálová Z., Kolář P., Šílený J. Fracturing of migmatite monitored by acoustic emission and ultrasonic sounding // Rock. Mech. Rock. Eng. 2019. V. 52. P. 47–59. https://doi.org/10.1007/s00603-018-1590-2
  28. Sondergeld C.H., Estey L.H. Source mechanisms and microfracturing during uniaxial cycling of rock // Pure and Applied Geophysics. 1982. V. 120(1). P. 151–166. https://doi.org/10.1007/BF00879434
  29. Stanchits S., Dresen G. Advanced acoustic emission analysis of brittle and porous rock fracturing. EPJ Web of Conferences. EDP Sciences. 2010. V. 6. https://doi.org/10.1051/epjconf/20100622010
  30. Stanchits S., Mayr S., Shapiro S., Dresen G. Fracturing of porous rock induced by fluid injection // Tectonophysics. 2011. V. 503. P. 129–145. https://doi.org/10.1016/j.tecto.2010.09.022
  31. Stanchits S., Vinciguerra S., Dresen G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite // Pure Appl Geophys. 2006. V. 163. P. 975–994. https://doi.org/10.1007/s00024-006-0059-5
  32. Stein S., Wysession M. An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing. 2003. 498 p.
  33. Stern H.S. A test by any other name: P values, Bayes factors, and statistical inference // Multivariate behavioral research. 2016. V. 51(1). P. 23–29. https://doi.org/10.1080/00273171.2015.1099032
  34. Stierle E., Vavryčuk V., Kwiatek G., Charalampidou E.M., Bohnhoff M. Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy // Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society. 2016. V. 205. P. 38–50. https://doi.org/10.1093/gji/ggw009
  35. Timoshkina E.P., Mikhailov V.O., Smirnov V.B. et al. Model of the Rupture Surface of the Khuvsgul Earthquake of January 12, 2021 From InSAR Data // Izv. Phys. Solid Earth. 2022. V. 58. P. 74–79. https://doi.org/10.1134/S1069351322010098
  36. Udias A., Buforn E. Principles of seismology. Cambridge Univ Press. 2018. 544 p.
  37. Udias A., Madariaga R., Buforn E. Source Mechanism of Earthquakes. Cambridge Univ Press. 2014. 302 p.
  38. Watts A.B. Crust and lithosphere dynamics. Treatise in Geophysics / Watts A.B. (ed.). Elsevier. 2015. 630 p.
  39. Zang A., Wagner F.C., Stanchits S., Dresen G., Andresen R., Haidekker M.A. Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads // Geophys J Int. 1998. V. 135. P. 1113–1130. https://doi.org/10.1046/j.1365-246X.1998.00706.x
  40. Zang A., Wagner F.C., Stanchits S., Janssen C., Dresen G. Fracture process zone in granite // J. Geophys. Res. 2000. V. 105. P. 651–661.
  41. Zang A., Wagner F.C., Dresen G. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure // J Geophys Res Solid Earth. 1996. V. 101. P. 17507–17521.
  42. Zhang B., Xiaopeng T., Binxiang J., Jinzhou Z., Zheming Z., Shunde Y. Study on microseismic mechanism of hydro-fracture propagation in shale // J. Petroleum Science and Engineering. 2019. V. 178. P. 711–722. https://doi.org/10.1016/j.petrol.2019.03.085
  43. Zhuang L., Zang A. Laboratory hydraulic fracturing experiments on crystalline rock for geothermal purposes // Earth-Science Reviews. 2021. 103580. https://doi.org/10.1016/j.earscirev.2021.103580

补充文件

附件文件
动作
1. JATS XML
2.

下载 (572KB)
3.

下载 (310KB)
4.

下载 (313KB)
5.

下载 (73KB)
6.

下载 (757KB)
7.

下载 (317KB)
8.

下载 (570KB)
9.

下载 (415KB)
10.

下载 (164KB)

版权所有 © Russian Academy of Sciences, 2023