A Spherical Block Model of Lithosphere Dynamics and Seismicity: Current State and Development Prospects

Capa

Citar

Texto integral

Resumo

A description of the evolution of a spherical block model of the dynamics and seismicity of the lithosphere is given. The main focus is on the current version and the introduction of a constructive automatic calibration (parameter selection) procedure to obtain the best approximation of key properties of regional and/or global seismicity. The paper presents some results of computational experiments.

Sobre autores

V. Rozenberg

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Autor responsável pela correspondência
Email: rozen@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620075

Bibliografia

  1. Аки К., Ричардс П. Количественная сейсмология: теория и методы. Т. 1, 2. М.: Мир. 1983. 720 с.
  2. Мельникова Л.А., Розенберг В.Л. Сферическая блоковая модель динамики и сейсмичности литосферы: различные модификации и вычислительные эксперименты. Екатеринбург: Труды ИММ УрО РАН. 2007. T. 13. № 3. C. 95–120.
  3. Мельникова Л.А., Розенберг В.Л. Стохастическая модификация сферической блоковой модели динамики и сейсмичности литосферы // Вычислительные методы и программирование. 2015. T. 16. C. 112–122.
  4. Мельникова Л.А., Розенберг В.Л., Соболев П.О., Соловьев А.А. Численное моделирование динамики системы тектонических плит: сферическая модификация блоковой модели // Вычислительная сейсмология. 2000. Вып. 31. С. 138–153.
  5. Розенберг В.Л. Сферическая блоковая модель динамики и сейсмичности литосферы: современное состояние и перспективы развития. Материалы докладов III Всероссийской научной конференции с международным участием “Современные методы оценки сейсмической опасности и прогноза землетрясений”, 25–26 октября 2023 г., Москва, Россия. C. 224–228.
  6. Соловьев А.А., Горшков А.И. Моделирование динамики блоковой структуры и сейсмичности Кавказа // Физика Земли. 2017. № 3. С. 1–11. doi: 10.7868/S0002333717030127
  7. Соловьев А.А., Горшков А.И. Моделирование сейсмичности региона Алтай-Саяны-Прибайкалье // Докл. РАН. Науки о Земле. 2021. T. 501. № 2. С. 204–209. doi: 10.31857/S2686739721120136
  8. Digas B., Melnikova L., .Rozenberg V. Application of parallel technologies to modeling lithosphere dynamics and seismicity / Wyrzykowski R. et al. (eds.): PPAM 2009, Part II. Lecture Notes in Computer Science (LNCS). 2010. V. 6068. P. 340–349.
  9. Gabrielov A.M., Newman W.I. Seismicity modeling and earthquake prediction: a review. Geophysical Monograph 83. IUGG, Washington. 1994. V. 18. P. 7–13.
  10. Global Hypocenters Data Base, NEIC/USGS, Denver, CO. URL: http://earthquake.usgs.gov/regional/neic/
  11. Gripp A.E., Gordon R.G. Young tracks of hotspots and current plate velocities // Geophysical Journal International. 2002. V. 150. P. 321–361. doi: 10.1046/j.1365-246x.2002.01627.x
  12. Ismail-Zadeh A.T., Le Mouel J.-L., Soloviev A.A., Tapponnier P., Vorobieva I.A. Numerical modeling of crustal block-and-fault dynamics, earthquakes and slip rates in the Tibet-Himalayan region // Earth and Planetary Science Letters. 2007. V. 258. P. 465–485.
  13. Ismail-Zadeh A.T., Soloviev A.A. Numerical modelling of lithospheric block-and-fault dynamics: what did we learn about large earthquake occurrences and their frequency? // Surveys in Geophysics. 2022. V. 43. P. 503–528. doi: 10.1007/s10712-021-09686-w
  14. Ismail-Zadeh A., Soloviev A., Sokolov V., Vorobieva I., Muller B., Schilling F. Quantitative modeling of the lithosphere dynamics, earthquakes and seismic hazard // Tectonophysics. 2018. V. 746. P. 624–647. doi: 10.1016/j.tecto.2017.04.007
  15. Keilis-Borok V.I., Soloviev A.A. (Eds.) Nonlinear dynamics of the lithosphere and earthquake prediction. – Berlin: Springer. 2003. – 337 P. doi: 10.1007/978-3-662-05298
  16. Melnikova L., Mikhailov I., Rozenberg V.Simulation of global seismicity: new computing experiments with the use of scientific visualization software / Sokolinsky L., Zymbler M. (eds.). Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science (CCIS). 2017. V. 753. P. 215–232. doi: 10.1007/978-3-319-67035-5-16
  17. Oksendal B. Stochastic differential equations: an introduction with application. New York: Springer. 2003. 360 p. doi: 10.1007/978-3-662-03620-4
  18. Panza G.F., Soloviev A.A., Vorobieva I.A. Numerical modeling of block-structure dynamics: application to the Vrancea region // Pure and Applied Geophysics. 1997. V. 149. P. 313–336.
  19. Peresan A., Vorobieva I.A., Soloviev A.A., Panza G.F. Simulation of seismicity in the block-structure model of Italy and its surroundings // Pure and Applied Geophysics. 2007. V. 164. P. 2193–2234. doi: 10.1007/s00024-007-0273-9
  20. Rozenberg V. Block model of lithosphere dynamics: new calibration method and numerical experiments / Sokolinsky L., Zymbler M. (eds.). Parallel Computational Technologies. PCT 2020.Communications in Computer and Information Science (CCIS). 2020. V. 1263. P. 181–197. DOI: 0.1007/978-3-030-55326-5-13
  21. Rozenberg V.L., Sobolev P.O., Soloviev A.A., Melnikova L.A. The spherical block model: dynamics of the global system of tectonic plates and seismicity // Pure and Applied Geophysics. 2005. V. 162. P. 145–164. doi: 10.1007/s00024-004-2584-4
  22. Vorobieva I., Ismail-Zadeh A., Gorshkov A. Nonlinear dynamics of crustal blocks and faults and earthquake occurrences in the Transcaucasian region // Physics of the Earth and Planetary Interiors. 2019. V. 297. doi: 10.1016/j.pepi.2019.106320
  23. Vorobieva I., Mandal P., Gorshkov A. Block-and-fault dynamics modeling of the Himalayan frontal arc: Implications for seismic cycle, slip deficit, and great earthquakes // Journal of Asian Earth Sciences. 2017. V. 148. P. 131–141. doi: 10.1016/j.jseaes.2017.08.033
  24. Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bulletin of the Seismological Society of America. 1994. V. 84. № 4. P. 974–1002.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024