Features of the Sakhalin mantle phase transition zone based on converted wave data
- Authors: Goev А.G.1, Oreshin S.I.2, Kostylev D.V.2,3, Kostyleva N.V.4
-
Affiliations:
- Sadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences
- Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Sakhalin Branch, Geophysical Survey, Russian Academy of Sciences
- The Institute of Marine Geology and Geophysics of the far Eastern branch of the Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 36-42
- Section: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/686290
- DOI: https://doi.org/10.31857/S0002333725020037
- EDN: https://elibrary.ru/DKRXCV
- ID: 686290
Cite item
Abstract
The research presents the phase transition zone boundaries’ topography estimates at the depths of about 410 and 660 km on the basis of data set obtained by Sakhalin island seismic station network using receiver function method. A representative data set consisting of 2500 individual PRFs was analyzed. We revealed a depression in the 660 km boundary in the central and northern parts of the island. The 410 km boundary is significantly elevated in the south Sakhalin, while within the rest of the island it is depressed in comparison to the expected standard depth. It has been suggested that the subsidence of the 410 boundary is connected with the presence of hot lower mantle matter in the phase transition zone in the northern part of the island.
Keywords
Full Text

About the authors
А. G. Goev
Sadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences
Author for correspondence.
Email: goev@idg.ras.ru
Russian Federation, Moscow
S. I. Oreshin
Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: goev@idg.ras.ru
Russian Federation, Moscow
D. V. Kostylev
Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences; Sakhalin Branch, Geophysical Survey, Russian Academy of Sciences
Email: goev@idg.ras.ru
Russian Federation, Moscow; Yuzhno-Sakhalinsk
N. V. Kostyleva
The Institute of Marine Geology and Geophysics of the far Eastern branch of the Russian Academy of Sciences
Email: goev@idg.ras.ru
Russian Federation, Yuzhno-Sakhalinsk
References
- Авдейко Г.П., Попруженко С.В., Палуева А.А. Современная тектоническая структура Курило-Камчатского региона и условия магмообразования. Геодинамика и вулканизм Курило-Камчатской островодужной системы. ИВГиГ ДВО РАН. Петропавловск-Камчатский. 2001. 428 с.
- Бурмаков Ю.А., Винник Л.П., Косарев Г.Л. и др. Структура и динамика литосферы по сейсмическим данным. М.: Наука. 1988. 221 с.
- Винник Л.П. Cейсмология приемных функций // Физика Земли. 2019. № 1. С. 16–27.
- Винник Л.П., Косарев Г.Л., Петерсен Н.В. Передаточные функции мантии в дальневосточной зоне субдукции // Докл. РАН. 1997. Т. 353. № 3. С. 379–382.
- Тараканов Р.З., Веселов О.В., Андреева М.Ю. О возможной границе фазовых переходов на глубине 350 км для зоны перехода от континента к океану // Докл. РАН. 2015. Т. 460. № 5. С. 585–588.
- Bianchi M.B., Assumpção M., Koch C., Beck S. Effect of the cold Nazca Slab on the depth of the 660 km discontinuity in South America // Journal of South American Earth Sciences. 2021. V. 112. Part 1. 103607.
- doi: 10.1016/j.jsames.2021.103607
- Cui Q., Zhou Y., Liu L., Gao Y., Li G., Shengfeng Zhang S. The topography of the 660-km discontinuity beneath the Kuril-Kamchatka: Implication for morphology and dynamics of the northwestern Pacific slab // Earth and Planetary Science Letters. 2023. V. 602. 117967.
- Fichtner A., van Herwaarden D.P., Afanasiev M., Simutė S., Krischer L., Çubuk-Sabuncu Y., Taymaz T., Colli L., Saygin E., Villaseñor A. et al. The collaborative seismic earth model: generation 1 // Geophysical Research Letters. 2018. V. 45. № 9. P. 4007–4016.
- Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920–5938.
- Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920–5938.
- Goes S., Yu C., Ballmer M.D. et al. Compositional heterogeneity in the mantle transition zone // Nature Review Earth & Environment. 2022. V. 3. P. 533–550
- doi: 10.1038/s43017-022-00312-w
- Guo Z., Zhou Y. Stagnant slabs and their return flows from finite-frequency tomography of the 410-km and 660-km discontinuities // Journal of Geophysical Research: Solid Earth. 2021. V. 126. e2020JB021099.
- Han R., Li Q., Huang R., Zhang H. Detailed structure of mantle transition zone beneath southeastern China and its implications for thinning of the continental lithosphere // Tectonophysics. 2020. V. 789. 228480.
- doi: 10.1016/j.tecto.2020.228480
- Hayes G.P., Moore G.L., Portner D.E., Hearne M., Flamme H., Furtney M., Smoczyk G.M. Slab2, a comprehensive subduction zone geometry model // Science. 2018. V. 362. P. 58–61.
- doi: 10.1126/science.aat4723
- Helffrich G. Topography of the transition zone seismic discontinuities // Rev. Geophys. 2000. V. 38. № 1. P. 141–158.
- Ishii T., Ohtani E. Dry metastable olivine and slab deformation in a wet subducting slab // Nature Geoscience. 2021. V. 14. P. 526–530.
- doi: 10.1038/s41561-021-00756-7
- Kennett B.L.N., Engdahl E.R.Traveltimes for global earthquake location and phase identification // Geophys. J. Int. 1991 V. 105. Р. 429–465.
- Liu X., Zhao D. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data // Physics of the Earth and Planetary Interiors. 2016. V. 252. P. 1–22.
- doi: 10.1016/j.pepi.2016.01.002
- Lloyd A.J., Wiens D.A., Zhu H., Tromp J., Nyblade A.A., Aster R.C. et al. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography // Journal of Geophysical Research: Solid Earth. 2020. V. 125. №. 3. 2019JB017823.
- doi: 10.1029/2019JB017823
- Mark H.F., Wiens D.A., Ivins E.R., Richter A., Mansour W., Magnani M.B. et al. Lithospheric erosion in the Patagonian slab window, and implications for glacial isostasy // Geophysical Research Letters. 2022. V. 49. e2021GL096863.
- doi: 10.1029/2021GL096863
- Mishra S., Prajapati S., Teotia S. S. Mantle Transition Zones (MTZ) discontinuities beneath the Andaman Subduction Zone // Journal of Asian Earth Sciences. 2020.
- doi: 10.1016/j.jseaes.2019.104102
- Ringwood A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle // Geochim. Cosmochim. Acta. 1991. V. 55. Р. 2083–2110.
- Sun M., Yu Y., Gao S., Liu K. Stagnation and tearing of the subducting northwest Pacific slab // Geology. 2022. V. 50. № 6. P. 676–680.
Supplementary files
