Features of the Sakhalin mantle phase transition zone based on converted wave data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The research presents the phase transition zone boundaries’ topography estimates at the depths of about 410 and 660 km on the basis of data set obtained by Sakhalin island seismic station network using receiver function method. A representative data set consisting of 2500 individual PRFs was analyzed. We revealed a depression in the 660 km boundary in the central and northern parts of the island. The 410 km boundary is significantly elevated in the south Sakhalin, while within the rest of the island it is depressed in comparison to the expected standard depth. It has been suggested that the subsidence of the 410 boundary is connected with the presence of hot lower mantle matter in the phase transition zone in the northern part of the island.

Full Text

Restricted Access

About the authors

А. G. Goev

Sadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences

Author for correspondence.
Email: goev@idg.ras.ru
Russian Federation, Moscow

S. I. Oreshin

Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: goev@idg.ras.ru
Russian Federation, Moscow

D. V. Kostylev

Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences; Sakhalin Branch, Geophysical Survey, Russian Academy of Sciences

Email: goev@idg.ras.ru
Russian Federation, Moscow; Yuzhno-Sakhalinsk

N. V. Kostyleva

The Institute of Marine Geology and Geophysics of the far Eastern branch of the Russian Academy of Sciences

Email: goev@idg.ras.ru
Russian Federation, Yuzhno-Sakhalinsk

References

  1. Авдейко Г.П., Попруженко С.В., Палуева А.А. Современная тектоническая структура Курило-Камчатского региона и условия магмообразования. Геодинамика и вулканизм Курило-Камчатской островодужной системы. ИВГиГ ДВО РАН. Петропавловск-Камчатский. 2001. 428 с.
  2. Бурмаков Ю.А., Винник Л.П., Косарев Г.Л. и др. Структура и динамика литосферы по сейсмическим данным. М.: Наука. 1988. 221 с.
  3. Винник Л.П. Cейсмология приемных функций // Физика Земли. 2019. № 1. С. 16–27.
  4. Винник Л.П., Косарев Г.Л., Петерсен Н.В. Передаточные функции мантии в дальневосточной зоне субдукции // Докл. РАН. 1997. Т. 353. № 3. С. 379–382.
  5. Тараканов Р.З., Веселов О.В., Андреева М.Ю. О возможной границе фазовых переходов на глубине 350 км для зоны перехода от континента к океану // Докл. РАН. 2015. Т. 460. № 5. С. 585–588.
  6. Bianchi M.B., Assumpção M., Koch C., Beck S. Effect of the cold Nazca Slab on the depth of the 660 km discontinuity in South America // Journal of South American Earth Sciences. 2021. V. 112. Part 1. 103607.
  7. doi: 10.1016/j.jsames.2021.103607
  8. Cui Q., Zhou Y., Liu L., Gao Y., Li G., Shengfeng Zhang S. The topography of the 660-km discontinuity beneath the Kuril-Kamchatka: Implication for morphology and dynamics of the northwestern Pacific slab // Earth and Planetary Science Letters. 2023. V. 602. 117967.
  9. Fichtner A., van Herwaarden D.P., Afanasiev M., Simutė S., Krischer L., Çubuk-Sabuncu Y., Taymaz T., Colli L., Saygin E., Villaseñor A. et al. The collaborative seismic earth model: generation 1 // Geophysical Research Letters. 2018. V. 45. № 9. P. 4007–4016.
  10. Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920–5938.
  11. Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920–5938.
  12. Goes S., Yu C., Ballmer M.D. et al. Compositional heterogeneity in the mantle transition zone // Nature Review Earth & Environment. 2022. V. 3. P. 533–550
  13. doi: 10.1038/s43017-022-00312-w
  14. Guo Z., Zhou Y. Stagnant slabs and their return flows from finite-frequency tomography of the 410-km and 660-km discontinuities // Journal of Geophysical Research: Solid Earth. 2021. V. 126. e2020JB021099.
  15. Han R., Li Q., Huang R., Zhang H. Detailed structure of mantle transition zone beneath southeastern China and its implications for thinning of the continental lithosphere // Tectonophysics. 2020. V. 789. 228480.
  16. doi: 10.1016/j.tecto.2020.228480
  17. Hayes G.P., Moore G.L., Portner D.E., Hearne M., Flamme H., Furtney M., Smoczyk G.M. Slab2, a comprehensive subduction zone geometry model // Science. 2018. V. 362. P. 58–61.
  18. doi: 10.1126/science.aat4723
  19. Helffrich G. Topography of the transition zone seismic discontinuities // Rev. Geophys. 2000. V. 38. № 1. P. 141–158.
  20. Ishii T., Ohtani E. Dry metastable olivine and slab deformation in a wet subducting slab // Nature Geoscience. 2021. V. 14. P. 526–530.
  21. doi: 10.1038/s41561-021-00756-7
  22. Kennett B.L.N., Engdahl E.R.Traveltimes for global earthquake location and phase identification // Geophys. J. Int. 1991 V. 105. Р. 429–465.
  23. Liu X., Zhao D. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data // Physics of the Earth and Planetary Interiors. 2016. V. 252. P. 1–22.
  24. doi: 10.1016/j.pepi.2016.01.002
  25. Lloyd A.J., Wiens D.A., Zhu H., Tromp J., Nyblade A.A., Aster R.C. et al. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography // Journal of Geophysical Research: Solid Earth. 2020. V. 125. №. 3. 2019JB017823.
  26. doi: 10.1029/2019JB017823
  27. Mark H.F., Wiens D.A., Ivins E.R., Richter A., Mansour W., Magnani M.B. et al. Lithospheric erosion in the Patagonian slab window, and implications for glacial isostasy // Geophysical Research Letters. 2022. V. 49. e2021GL096863.
  28. doi: 10.1029/2021GL096863
  29. Mishra S., Prajapati S., Teotia S. S. Mantle Transition Zones (MTZ) discontinuities beneath the Andaman Subduction Zone // Journal of Asian Earth Sciences. 2020.
  30. doi: 10.1016/j.jseaes.2019.104102
  31. Ringwood A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle // Geochim. Cosmochim. Acta. 1991. V. 55. Р. 2083–2110.
  32. Sun M., Yu Y., Gao S., Liu K. Stagnation and tearing of the subducting northwest Pacific slab // Geology. 2022. V. 50. № 6. P. 676–680.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Position of seismic stations used in the work (red triangles).

Download (188KB)
3. Fig. 2. Map of the study region. Orange dots show PRF exchange points for a depth of 535 km. Black rectangles show areas for which the summation was performed. Isolines show the depth of the slab roof according to the global model [Hayes et al., 2018].

Download (453KB)
4. Fig. 3. Stacks obtained by summing individual PRFs according to exchange points. The numbers above the stacks correspond to the areas in Fig. 2. The exchange waves from the 410 and 660 boundaries are marked.

Download (394KB)

Copyright (c) 2025 Russian academy of sciences