Reconstruction of the spatial distribution of filtration properties of heterogeneous geologic media based on variations of microseismicity resulting from fluid injection
- Авторлар: Novikova Е.V.1, Barishnikov N.A.1, Turuntaev S.B.1, Trimonova M.А.1
-
Мекемелер:
- Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
- Шығарылым: № 2 (2025)
- Беттер: 114-127
- Бөлім: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/686363
- DOI: https://doi.org/10.31857/S0002333725020091
- EDN: https://elibrary.ru/DMCNEA
- ID: 686363
Дәйексөз келтіру
Аннотация
Determining the properties of heterogeneous reservoirs based on microseismic evolution data is an important task in field development. Analyzing the propagation of microseismic events occurring during fluid injection/withdrawal provides valuable information about permeability and stress state of the reservoir. In this paper, we consider the inverse problem of determining reservoir filtration properties from microseismic event propagation data. For this purpose, the influence of various geological factors on the distribution of microseismic event sources is investigated. Machine learning methods were used to identify correlations between geologic model parameters and microseismicity evolution. Due to the insufficient variability of in-situ data, an artificial database of catalogs of microseismic events containing the coordinates of sources and their occurrence times was created to train the model. For this purpose, numerical modeling of fluid injection and generation of microseismic events in synthetic models of permeable media with different geological structure was carried out. Thus, a comprehensive approach to the restoration of filtration properties of heterogeneous reservoirs from microseismicity evolution data using machine learning methods is proposed. The proposed methodology can be applied to optimize field development, improve the efficiency of fluid extraction and reduce the risks associated with the occurrence of undesirable anthropogenic seismic activity.
Толық мәтін

Авторлар туралы
Е. Novikova
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: e.novikova@idg.ras.ru
Ресей, Moscow
N. Barishnikov
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Email: e.novikova@idg.ras.ru
Ресей, Moscow
S. Turuntaev
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Email: e.novikova@idg.ras.ru
Ресей, Moscow
M. Trimonova
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Email: e.novikova@idg.ras.ru
Ресей, Moscow
Әдебиет тізімі
- Адушкин В. В., Турунтаев С. Б. Техногенная сейсмичность — индуцированная и триггерная. М.: ИДГ РАН. 2015a. 364 с.
- Баренблатт Г. И., Ентов В. М., Рыжик В. М. Движение жидкостей и газов в природных пластах. М.: Недра. 1984. 211 с.
- Dichiarante A.M., Langet N., Bauer R.A., Goertz-Allmann B.P., Williams-Stroud S.C., Kühn D., Oye V., Greenberg S.E., Dando B.D.E.Identifying geological structures through microseismic cluster and burst analyses complementing active seismic interpretation // Tectonophysics. 2021. Т. 820. С. 229107.
- Jessell M., Guo J., Li Y., Lindsay M., Scalzo R., Giraud J., Pirot G., Cripps E., Ogarko V. Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications // Earth Syst Sci Data. 2022. Т. 14. № 1. С. 381–392.
- Ritz V., Rinaldi A. P., Wiemer S. Transient evolution of the relative size distribution of earthquakes as a risk indicator for induced seismicity // Commun Earth Environ. 2022. Т. 3.
- Scibek J. Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites // Sci Data. 2020. Т. 7. № 1. С. 95.
- Shapiro S. Fluid-Induced Seismicity. Cambridge: Cambridge University Press. 2015.
- Turuntaev S., Eremeeva E., Zenchenko E. Laboratory study of microseismicity spreading due to pore pressure change // J. Seismol. 2013. Т. 17.
- Vaswani A., Shazeer N.M., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017. Т. 2017-Decem. № Nips. С. 5999–6009.
- Zoback M. D. Managing the seismic risk posed by wastewater disposal // Earth Magazine. 2012. С. 38–43.
- Zwicker D. A Python package for solving partial differential equations // J. Open Source Softw. 2020. Т. 5. № 48. С. 2158.
- idglgfd/permeability_reconstruction_network [Электронный ресурс].
- URL: https://github.com/idglgfd/permeability_reconstruction_network (дата обращения: 15.08.2024).
Қосымша файлдар
