Acoustic emission accompanying preparation of dynamic slip on a model heterogeneous fault of meter scale
- Authors: Morozova K.G.1, Pavlov D.V.1, Ostapchuk A.А.1
-
Affiliations:
- Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 128-136
- Section: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/686367
- DOI: https://doi.org/10.31857/S0002333725020107
- EDN: https://elibrary.ru/DMQDJH
- ID: 686367
Cite item
Abstract
Regularities in distribution of tectonic fault sections with different frictional properties control to a great extent the dynamics of fault sliding. The impossibility of directly studying the structure of fault zones at seismogenic depths makes it especially important to develop diagnostic methods that would provide information on the structural features of earthquake sources formation areas and, thereby, predict the sliding dynamics.
This work presents results of laboratory experiments directed to studying regularities of elastic wave emission during shear deformation of a model fault with a spatially inhomogeneous structure of the sliding interface. The model fault was a loaded contact of diabase blocks 750 × 120 mm2 in size. Two round zones, each 100 mm in diameter, were made at the interface. Those zones had high strength showing the property of velocity weakening, the so-called asperities. The relative position of asperities changed in experiments.
The process of dynamic slip formation, caused by asperity disruption, was accompanied by emission of a great number of acoustic pulses that were recorded in the frequency range of 20–80 kHz. During the experiments, the data on spatial distribution of pulses allow to detect two separate contact regions only when the distance between these regions exceeded 20 mm. Differences in the statistics of pulses emitted at different asperities were observed.
Full Text

About the authors
K. G. Morozova
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Author for correspondence.
Email: morozova.kg@idg.ras.ru
Russian Federation, Moscow
D. V. Pavlov
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Email: morozova.kg@idg.ras.ru
Russian Federation, Moscow
A. А. Ostapchuk
Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences
Email: morozova.kg@idg.ras.ru
Russian Federation, Moscow
References
- Беседина А.Н., Новикова Е.В., Белоклоков П.В. и др. Особенности зон локализации сильнейших землетрясений Курило-Камчатской дуги // Физика Земли. 2025. № 2. С. 19–35.
- Гридин Г.А., Кочарян Г.Г., Морозова К.Г., Новикова Е.В., Остапчук А.А., Павлов Д.В. Развитие процесса скольжения по гетерогенному разлому. Крупномасштабный лабораторный эксперимент // Физика Земли. 2023. № 3. С. 139–147.
- Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС. 2016. 424 с.
- Кочарян Г.Г. Возникновение и развитие процессов скольжения в зонах континентальных разломов под действием природных и техногенных факторов. Обзор современного состояния вопроса // Физика Земли. 2021. № 4. С. 3–41. https://doi.org/10.31857/S0002333721040062
- Кочарян Г.Г., Остапчук А.А., Павлов Д.В., Гридин Г.А., Морозова К.Г., Hongwen J., Пантелеев И.А. Лабораторные исследования закономерностей фрикционного взаимодействия блоков скальной породы метрового масштаба. Методика и первые результаты // Физика Земли. 2022. № 6. С. 162–174.
- Соболев Г.А. Физические основы прогноза землетрясений. М.: Наука. 1993. 314 с.
- Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука. 2003. 270 с.
- Allen R. Automatic earthquake recognition and timing from single traces // Bull. Seismol. Soc. Am. 1978. V. 68. P. 1521–1532.
- Buijze L., Guo Y., Niemeijer A.R., Ma S., Spiers C.J. Effects of heterogeneous gouge segments on the slip behavior of experimental faults at dm scale // Earth Planet. Sci. Lett. 2021. https://doi.org/10.1016/j.epsl.2020.116652.
- Collettini C., Tesei T., Scuderi M.M., Carpenter B.M., Viti C. Beyond Byerlee Friction, Weak Faults and Implications for Slip Behavior // Earth Planet. Sci. Lett. 2019. V. 519. P. 245–263. https://doi.org/10.1016/j.epsl.2019.05.011
- Corbi F., Funiciello F., Brizzi S., Lallemand S., Rosenau M. Control of asperities size and spacing on seismic behavior of subduction mega thrusts // Geophys. Res. Lett. 2017.V. 44. P. 8227–8235. https://doi.org/10.1002/2017GL074182
- Dublanchet P., Bernard P., Favreau P. Interactions and triggering in a 3-D rate-and-state asperity model // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2225–2245, https://doi.org/10.1002/jgrb.50187
- Fagereng Å., Beall A. Is complex fault zone behaviour a reflection of rheological heterogeneity? // Phil.Trans.R.Soc. 2021. A 379: 20190421. https://doi.org/10.1098/rsta.2019.0421
- Frank W., Shapiro N. M., Husker A., Kostoglodov V., Gusev A.A., Campillo M. The evolving interaction of low-frequency earthquakes during transient slip // Science Advances. 2016. V. 2. № 4. P. e1501616. https://doi.org/10.1126/sciadv.1501616
- Gounon A., Latour S., Letort J., ElArem S. Rupture nucleation on a periodically heterogeneous interface // Geophysical Research Letters. 2022. V. 49. P. e2021GL096816. https://doi.org/10.1029/2021GL096816.
- Gulia L., Wiemer S. Real-time discrimination of earthquake foreshocks and aftershocks // Nature. 2019. V. 574. P. 193–199. https://doi.org/10.1038/s41586-019-1606-4
- Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California // Bull. Seismol. Soc. Am. 1944. V. 34. P.185–188.
- Kocharyan G.G., Ostapchuk A.A., Pavlov D.V. Fault Sliding Modes — Governing, Evolution and Transformation. Multiscale Biomechanics and Tribology of Inorganic and Organic Systems / Ostermeyer G.P., Popov V.L., Shilko E.V., Vasiljeva O.S. (eds.). Cham.: Springer. 2021. P. 323–358. https://doi.org/10.1007/978-3-030-60124-9_15
- Ostapchuk A, Polyatykin V, Popov M, Kocharyan G. Seismogenic patches in a tectonic fault interface // Front. Earth Sci. 2022. V. 10. P. 904814. https://doi.org/10.3389/feart.2022.904814
- Peng Z., Gomberg J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena // Nature Geoscience. 2010. V. 3. № 9. P. 599–607. https://doi.org/10.1038/ngeo940
- Turcotte D.L. Self-organized criticality // Rep. Prog. Phys. 1999. V. 62. P. 1377. https://doi.org/10.1088/0034-4885/62/10/201
- Veedu D. M., Barbor S. The Parkfield tremors reveal slow and fast ruptures on the same asperity // Nature. 2016. V. 532. P. 361–365. https://doi.org/10.1038/nature17190
- Vorobieva I., Shebalin P., Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system // Geophysical Research Letters. 2016. V. 43. P. 6869–6875. https://doi.org/10.1002/2016GL069636
- Wyss M., Sobolev G., Clippard J.D. Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods // Earth Planet Sp. 2004. V. 56 Pp. 725–740, 554, 116652.
Supplementary files
