Acoustic emission accompanying preparation of dynamic slip on a model heterogeneous fault of meter scale

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Regularities in distribution of tectonic fault sections with different frictional properties control to a great extent the dynamics of fault sliding. The impossibility of directly studying the structure of fault zones at seismogenic depths makes it especially important to develop diagnostic methods that would provide information on the structural features of earthquake sources formation areas and, thereby, predict the sliding dynamics.

This work presents results of laboratory experiments directed to studying regularities of elastic wave emission during shear deformation of a model fault with a spatially inhomogeneous structure of the sliding interface. The model fault was a loaded contact of diabase blocks 750 × 120 mm2 in size. Two round zones, each 100 mm in diameter, were made at the interface. Those zones had high strength showing the property of velocity weakening, the so-called asperities. The relative position of asperities changed in experiments.

The process of dynamic slip formation, caused by asperity disruption, was accompanied by emission of a great number of acoustic pulses that were recorded in the frequency range of 20–80 kHz. During the experiments, the data on spatial distribution of pulses allow to detect two separate contact regions only when the distance between these regions exceeded 20 mm. Differences in the statistics of pulses emitted at different asperities were observed.

Full Text

Restricted Access

About the authors

K. G. Morozova

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Author for correspondence.
Email: morozova.kg@idg.ras.ru
Russian Federation, Moscow

D. V. Pavlov

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: morozova.kg@idg.ras.ru
Russian Federation, Moscow

A. А. Ostapchuk

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: morozova.kg@idg.ras.ru
Russian Federation, Moscow

References

  1. Беседина А.Н., Новикова Е.В., Белоклоков П.В. и др. Особенности зон локализации сильнейших землетрясений Курило-Камчатской дуги // Физика Земли. 2025. № 2. С. 19–35.
  2. Гридин Г.А., Кочарян Г.Г., Морозова К.Г., Новикова Е.В., Остапчук А.А., Павлов Д.В. Развитие процесса скольжения по гетерогенному разлому. Крупномасштабный лабораторный эксперимент // Физика Земли. 2023. № 3. С. 139–147.
  3. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС. 2016. 424 с.
  4. Кочарян Г.Г. Возникновение и развитие процессов скольжения в зонах континентальных разломов под действием природных и техногенных факторов. Обзор современного состояния вопроса // Физика Земли. 2021. № 4. С. 3–41. https://doi.org/10.31857/S0002333721040062
  5. Кочарян Г.Г., Остапчук А.А., Павлов Д.В., Гридин Г.А., Морозова К.Г., Hongwen J., Пантелеев И.А. Лабораторные исследования закономерностей фрикционного взаимодействия блоков скальной породы метрового масштаба. Методика и первые результаты // Физика Земли. 2022. № 6. С. 162–174.
  6. Соболев Г.А. Физические основы прогноза землетрясений. М.: Наука. 1993. 314 с.
  7. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука. 2003. 270 с.
  8. Allen R. Automatic earthquake recognition and timing from single traces // Bull. Seismol. Soc. Am. 1978. V. 68. P. 1521–1532.
  9. Buijze L., Guo Y., Niemeijer A.R., Ma S., Spiers C.J. Effects of heterogeneous gouge segments on the slip behavior of experimental faults at dm scale // Earth Planet. Sci. Lett. 2021. https://doi.org/10.1016/j.epsl.2020.116652.
  10. Collettini C., Tesei T., Scuderi M.M., Carpenter B.M., Viti C. Beyond Byerlee Friction, Weak Faults and Implications for Slip Behavior // Earth Planet. Sci. Lett. 2019. V. 519. P. 245–263. https://doi.org/10.1016/j.epsl.2019.05.011
  11. Corbi F., Funiciello F., Brizzi S., Lallemand S., Rosenau M. Control of asperities size and spacing on seismic behavior of subduction mega thrusts // Geophys. Res. Lett. 2017.V. 44. P. 8227–8235. https://doi.org/10.1002/2017GL074182
  12. Dublanchet P., Bernard P., Favreau P. Interactions and triggering in a 3-D rate-and-state asperity model // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2225–2245, https://doi.org/10.1002/jgrb.50187
  13. Fagereng Å., Beall A. Is complex fault zone behaviour a reflection of rheological heterogeneity? // Phil.Trans.R.Soc. 2021. A 379: 20190421. https://doi.org/10.1098/rsta.2019.0421
  14. Frank W., Shapiro N. M., Husker A., Kostoglodov V., Gusev A.A., Campillo M. The evolving interaction of low-frequency earthquakes during transient slip // Science Advances. 2016. V. 2. № 4. P. e1501616. https://doi.org/10.1126/sciadv.1501616
  15. Gounon A., Latour S., Letort J., ElArem S. Rupture nucleation on a periodically heterogeneous interface // Geophysical Research Letters. 2022. V. 49. P. e2021GL096816. https://doi.org/10.1029/2021GL096816.
  16. Gulia L., Wiemer S. Real-time discrimination of earthquake foreshocks and aftershocks // Nature. 2019. V. 574. P. 193–199. https://doi.org/10.1038/s41586-019-1606-4
  17. Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California // Bull. Seismol. Soc. Am. 1944. V. 34. P.185–188.
  18. Kocharyan G.G., Ostapchuk A.A., Pavlov D.V. Fault Sliding Modes — Governing, Evolution and Transformation. Multiscale Biomechanics and Tribology of Inorganic and Organic Systems / Ostermeyer G.P., Popov V.L., Shilko E.V., Vasiljeva O.S. (eds.). Cham.: Springer. 2021. P. 323–358. https://doi.org/10.1007/978-3-030-60124-9_15
  19. Ostapchuk A, Polyatykin V, Popov M, Kocharyan G. Seismogenic patches in a tectonic fault interface // Front. Earth Sci. 2022. V. 10. P. 904814. https://doi.org/10.3389/feart.2022.904814
  20. Peng Z., Gomberg J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena // Nature Geoscience. 2010. V. 3. № 9. P. 599–607. https://doi.org/10.1038/ngeo940
  21. Turcotte D.L. Self-organized criticality // Rep. Prog. Phys. 1999. V. 62. P. 1377. https://doi.org/10.1088/0034-4885/62/10/201
  22. Veedu D. M., Barbor S. The Parkfield tremors reveal slow and fast ruptures on the same asperity // Nature. 2016. V. 532. P. 361–365. https://doi.org/10.1038/nature17190
  23. Vorobieva I., Shebalin P., Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system // Geophysical Research Letters. 2016. V. 43. P. 6869–6875. https://doi.org/10.1002/2016GL069636
  24. Wyss M., Sobolev G., Clippard J.D. Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods // Earth Planet Sp. 2004. V. 56 Pp. 725–740, 554, 116652.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the RAMA experimental setup: B1, B2 — movable and fixed blocks; D1–D4 — laser displacement sensors; V — AE sensor; A — asperity; d — distance between asperities.

Download (59KB)
3. Fig. 2. Example of AE pulse location. AE records at different distances from the source are shown. Arrival times are shown with yellow asterisks.

Download (137KB)
4. Fig. 3. Results of recording the deformation process of a model fault with two asperities: (a) — dependence of the shear force on time; (b) — dependence of the interblock displacement on time (the colors of the lines correspond to the colors of the laser displacement sensors D in Fig. 1); (c) — recording of the AE signal. The insets show the section corresponding to the final two-second loading interval.

Download (181KB)
5. Fig. 4. Localization of registered AE pulses (a); and the Gutenberg–Richter recurrence law (b). The model fault contained two asperities located at a distance of 23 mm. The size and color of the circle correspond to the amplitude of the AE pulse (a); the AE statistics are described by the relation lgN = 3.1–1.53lgAS (b).

Download (144KB)
6. Fig. 5. Spatial distribution of AE pulses in the slip plane for different configurations of the model fault interface. The cases of absence of asperities are shown, when the interface is composed of a fluoroplastic layer (a) and when the distances between asperities are d = 0 mm (b); d = 4 mm (c); d = 23 mm (d); and d = 58 mm (d). The grayscale corresponds to the number of pulses in the cell normalized to their total number. The relative linear density of foci along the fault plane is shown along the upper boundary of the spatial distribution.

Download (335KB)
7. Fig. 6. Time variations of the amplitude (a) and the Gutenberg-Richter recurrence law (b) of AE pulses at the final stage of loading of a model fault containing two asperities located at a distance of 300 mm. Orange color — pulses localized in the zone of the left asperity, which is located closer to the loaded end and which is destroyed first. Green — pulses localized in the zone of the right spot. Arrows mark the moments of slip acts, solid lines — the boundaries of intervals (duration 12 s) for which statistics are presented in (b). Circles denote pulses emitted during 12 s before the first AP, diamonds — between the first and second AP.

Download (175KB)

Copyright (c) 2025 Russian academy of sciences