On the regime of the induced seismicity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The problem of induced seismicity has both an important practical and theoretical aspects. The practical aspect is related to the danger of induced seismicity. In a number of cases, the danger of strong induced seismicity led to the closure of important industrial projects. The theoretical aspect is related to the well-known paradox of seismicity, which is the impossibility of the occurrence of conventional earthquakes at depths greater than several tens of kilometers. It follows that the physics of induced, usually near-surface earthquakes may differ from the physics of the deeper events. Examples of a number of areas of induced seismicity are considered, representing both the vicinity of large reservoirs and areas of intensive extraction of hydrocarbon and ore raw materials. In the considered areas a few common trends were more or less clearly identified. After the growth of induced seismicity, even with continuing strong technogenic impact, a tendency for seismic activity to decline is observed. Also, by analyzing the generalized vicinity of a large event (GVLE), the proximity of the fore- and aftershock process intensity is revealed for induced seismicity zones; which contrasts with the case of ordinary seismicity, for which the aftershock process activity is usually much stronger. It can be assumed that the decline in the induced seismicity is associated with the release of initial tectonic stresses, and the proximity of the fore- and aftershock process intensity indicates a difference in the physical mechanism of induced near-surface earthquakes from ordinary, deeper earthquakes.

Full Text

Restricted Access

About the authors

M. V. Rodkin

Institute of Earthquake Prediction Theory and Mathematical Geophysics of Russian academy of Sciences (IEPT RAS); Oil and Gas Research Institute of Russian Academy of Sciences

Author for correspondence.
Email: rodkin@mitp.ru
Russian Federation, Moscow; Moscow

References

  1. Адушкин В.В., Родионов В.Н., Турунтаев С.Б., Юдин А.Е. Сейсмичность месторождений углеводородов // Нефтегазовое обозрение. 2000. № 1. С. 4–15.
  2. Беседина А.Н., Гридин Г.А., Кочарян Г.Г., Морозова К.Г., Павлов Д.В. Активизация сейсмоакустических событий после массовых взрывов на железнорудном месторождении Курской магнитной аномалии // Физико-технические проблемы разработки полезных ископаемых. 2024. № 1. С. 3–14.
  3. Годзиковская А.А., Стром А.Л., Бесстрашнов В.М. Водохранилища и землетрясения // Геоэкология. 1998. № 1. С. 105–112.
  4. Гупта Ч., Растоги Б. Плотины и землетрясения. М.: Наука. 1977. 237 с.
  5. Иванов С.Н. Непроницаемая зона на границе верхней и средней части земной коры // Физика Земли. 1999. № 9. С. 96–102.
  6. Иванов С.Н., Иванов К.С. Реологическая модель строения земной коры (модель 3-го поколения) // Литосфера. 2018. № 4. С. 3–18.
  7. Калинин В.А., Родкин М.В., Томашевская И.С. Геодинамические эффекты физико-химических превращений в твердой среде. М.: Наука. 1989. 158 с.
  8. Касахара К. Механика землетрясений. М.: Мир. 1985. 264 с.
  9. Пунанова С.А., Родкин М.В. Вызванная сейсмичность и загрязнение окружающей среды токсичными элементами при разработке сланцевых толщ. Проблемы региональной геологии запада Восточно-Европейской платформы и смежных территорий: материалы III Междунар. науч. конф. Республика Беларусь, Минск, 15 декабря 2021 г. / О.В. Лукашев (гл. ред.). Минск: БГУ. 2021. С. 82–88.
  10. Рогожин Е.А. Тектоника очаговой зоны Нефтегорского землетрясения 27(28) мая 1995 г. на Сахалине // Геотектоника. 1996. № 2. С. 45–53.
  11. Родкин М.В. Сейсмический режим в обобщенной окрестности сильного землетрясения // Вулканология и сейсмология. 2008. № 6. С. 66–77.
  12. Родкин М.В., Рукавишникова Т.А. Вызванная сейсмичность: серьезная угроза добыче сланцевой нефти? // Актуальные проблемы нефти и газа. 2018. Т. 3. № 22. 11 с. https://doi.org/10.29222/ipng.2078-5712.2018-22.art 39
  13. Родкин М.В. Типовая фор- и афтершоковая аномалия — эмпирика, интерпретация // Вулканология и сейсмология. 2020. № 1. С. 64–76.
  14. Родкин М.В., Рундквист Д.В. Геофлюидодинамика. Прииложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза. Долгопрудный: изд-во “Интеллект”. 2017. 288 с.
  15. Родкин М.В., Липеровская Е.В. О различии физических механизмов разноглубинных землетрясений и характера их ионосферного отклика // Физика Земли. 2023. № 3. С. 48–62.
  16. Соболев Г.А. Основы прогноза землетрясений. М.: Наука. 1993. 314 с.
  17. Bridgman P.W. Polymorphic Transitions and Geological Phenomena // American Journal of Science A. 1945. V. 243. № 1. P. 90–96.
  18. Carder D.S. Seismic investigations in the Boulder Dam area, 1940–1944, and the influence of reservoir loading on earthquake activity // Bull Seismol. Soc. Am. 1945. V. 35. P. 175–192.
  19. Chelidze T., Matcharashvil T., Mepharidze E., Dovgal N. Complexity in Geophysical Time Series of Strain/Fracture at Laboratory and Large Dam Scales: Review // Entropy. 2023. V. 25. № 3. P. 467. https://doi.org/10.3390/e25030467
  20. Davis S., Frohlich C. Did (Or Will) Fluid Injection Cause Earthquakes? — Criteria for a Rational Assessment // J Seismological Research Letters. 1993. V. 64. P. 207–224.
  21. Dempsey D.E., Suckale J. Physics‐Based Forecasting of Induced Seismicity at Groningen Gas Field, The Netherlands: Post Hoc Evaluation and Forecast Update // Seismological Research Letters 2023. https://doi.org/10.1785/0220220317
  22. Green H.W. Phase-transformation-induced lubrication of earthquake sliding // Philos. Trans. A Math. Phys. Eng. Sci. 2017. Sep 28. V. 375. № 2103. P. 20160008. https://doi.org/.1098/rsta.2016.0008. PMID: 28827426; PMCID: PMC5580448.
  23. Gupta H.K. Induced seismicity hazard mitigation through water level manipulation at Koyna, India: a suggestion // Bull. Seismol. Soc. Am. 1983. № 73. P. 679–682.
  24. Gupta H.K. Artificial Water Reservoir-Triggered Seismicity (RTS): Most Prominent Anthropogenic Seismicity // Surveys in Geophysics. 2022. № 43. P. 619–659. https://doi.org/10.1007/s10712-021-09675-z
  25. Gillian Т.R. Foulgera, Miles P. Wilsona, Jon G. Gluyasa, Bruce R. Juliana, Richard J. Daviesba Global review of human-induced earthquakes // Earth-Science Reviews. 2018. № 178. P. 438–514.
  26. Houston H. Deep earthquakes // Treatise on Geophysics. 2nd edition. 2015. V. 4. P. 329–354.
  27. Krupnick A., Echarte I. Induced Seismicity Impacts of Unconventional Oil and Gas Development. RFF. Report. 2017. Goebel. T.H.W. 30 p.
  28. Llenos A.L., Michael A.J. Modeling Earthquake Rate Changes in Oklahoma and Arkansas: Possible Signatures of Induced Seismicity // Bulletin of the Seismological Society of America. 2013. V. 103. №. 5. P. 2850–2861. https://doi.org/10.1785/0120130017.
  29. Mikhail Rodkin, Andrey Patonin, Natalia Shikhova, Alexander Ponomarev, Vladimir Smirnov Comparison of fore- and aftershock activity in the generalized vicinity of large earthquakes, rock bursts and acoustic emission events: 37th General Assembly (GA) of the European Seismological Commission, 19–24 September 2021. Session 21: Physics of earthquake preparation process: from laboratory experiments to earthquake forecast. 2021. № 493.
  30. Rodkin M.V., Tikhonov I.N. The typical seismic behavior in the vicinity of a large earthquake // Physics and Chemistry of the Earth. 2016 V. 95. P. 73–84.
  31. Rodkin M.V. The Variability of Earthquake Parameters with the Depth: Evidences of Difference of Mechanisms of Generation of the Shallow, Intermediate-Depth, and the Deep Earthquakes // Pure Appl. Geophys. 2022. https://doi.org/10.1007/s00024-021-02927-4
  32. Rodkin M.V., Lyubushin A.A. Can Induced Seismicity Decrease Under a Long Strong Anthropogenic Excitation? // Nov. Res. Sci. 2023. V. 14. № 3. P. NRS.000840. https://doi.org/10.31031/NRS.2023.14.000840
  33. Shashidhar D., Mallika K., Mahato C. et al., A Catalogue of Earthquakes in the Koyna–Warna Region, Western India (2005–2017) // Journal of the Geological Society of India. 2019. V. 93. № 1. P. 7–24. https://doi.org/10.1007/s12594-019-1115-y
  34. Telesca L., Thai A.T., Lovallo M., Cao D.T. Visibility Graph Analysis of Reservoir-Triggered Seismicity: The Case of Song Tranh 2 Hydropower, Vietnam // Entropy. 2022. V. 24. P. 1620. https://doi.org/10.3390/e24111620
  35. Van der Baan K., Calixto F.J. Human‐induced seismicity and large‐scale hydrocarbon production in the USA and Canada // Geochemistry, Geophysics, Geosystems. 2017. V. 18. № 7. Р. 2467–2485.
  36. Van Thienen-Visser K., Breunese J.N. Induced seismicity of the Groningen gas field: History and recent developments // The Leading Edge. 2015. V. 34. № 6. Р. 664–671. https://doi.org/10.1190/tle34060664.1
  37. Van Elk J., Doornhof D., Bommer J., Bourne S., Oates S., Pinho R., Crowley H. Hazard and risk assessments for
  38. induced seismicity in Groningen // Netherlands Journal of Geosciences. 2017. V. 96. № 5. P. 259–269. https://doi.org/10.1017/njg.2017.37
  39. Vlek C. Reflections and Some Questions about Assessing the Maximum Possible Earthquake in the Long-Exploited Groningen Gas Field // Seismol. Res. Lett. 2023. V. XX.P. 1–10. https://doi.org/10.1785/0220230084
  40. Vorobieva I., Shebalin P., Narteau C. Condition of Occurrence of Large Man-Made Earthquakes in the Zone of Oil Production, Oklahoma // Izvestiya, Physics of the Solid Earth. 2020. V. 56. № 6. P. 911–919. https://doi.org/10.1134/S10693513200601309
  41. Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement // BSSA. 1994. V. 84. № 4. P. 974–1002.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of events in the Koyna (blue dots) and Varna (green) reservoirs. Significant events (M ≥ 2.0) and stronger ones (M ≥ 4.0) are shown, red dots.

Download (118KB)
3. Fig. 2. Event flow (a) and b-value change trend (b). Red arrows indicate the moments of the two strongest events (M ≥ 5.0).

Download (201KB)
4. Fig. 3. Intensity of fore- and aftershock flows for the Koyna-Warna area; the intensity of the foreshock flow is noticeably less, but comparable to the intensity of the aftershock flow.

Download (193KB)
5. Fig. 4. Gas production at the Groningen field (a), change in the intensity of the flow of significant events and the growth trend of b-value (b). The arrows in Fig. 3b indicate the strongest events M = 3.6, M = 3.5. The color of the dots reflects averaging over groups of different numbers of events; for the initial period of time, with a smaller flow of events, the group size is smaller.

Download (234KB)
6. Fig. 5. Foreshock (a) and aftershock (b) cascades of the EOPS for the Groningen deposit area.

Download (184KB)
7. Fig. 6. Number of significant events (M ≥ 2.7, red dots) per month and total oil production and injection volumes in Oklahoma.

Download (215KB)
8. Fig. 7. Foreshock (a) and aftershock (b) modes of the Oklahoma earthquake.

Download (199KB)
9. Fig. 8. Zhezkazgan b-value. The arrows indicate the moments of the three strongest events (K = 7.6, 7.0 and 6.8).

Download (103KB)
10. Fig. 9. Zhezkazgan, foreshock (a) and aftershock (b) cascades of the EOZ.

Download (222KB)

Copyright (c) 2025 Russian academy of sciences