The 20th anniversary of the installation of the small-aperture “Mikhnevo” array. Monitoring induced seismicity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Over 20 years of continuous operation of the small-aperture seismic array (SASA) “Mikhnevo”, a huge experience in recording ultra-weak signals generated by regional and global seismicity has been accumulated. High-resolution data processing methods have been developed and applied, including directional summation and waveform cross-correlation. Within the framework of this review of the results of instrumental observations and processing, two approaches to reducing the detection threshold for seismic events when monitoring induced seismicity are considered — the use of array stations and the method of waveform cross-correlation (WCC). The effectiveness of the approaches in relation to the detection, location, and identification of weak seismic sources is illustrated by the aftershock sequence of the earthquake near Mariupol that occurred on August 7, 2016, as well as the aftershocks of the fifth and sixth announced explosions in the DPRK, detected during the period from September 9, 2016, to September 11, 2021. The coordinates of the earthquake were estimated using the data of the “Mikhnevo” array and the temporary SASA of the IDG RAS “Rostov-Don”. The location accuracy is comparable to the accuracy provided by 49 three-component (3-C) stations of the FRC UGS RAS and the International Monitoring System (IMS). In the five days after the earthquake, 12 aftershocks were detected and located relative to the mainshock using the WCC method. The group stations of the IMS AKASG and BRTR and the 3-C station KBZ also participated in the detection and estimation of the parameters. The network of stations of the FRC UGS RAS detected 5 aftershocks, and the IMS did not detect a single one. The location of explosions in the DPRK using the WCC made it possible to determine their relative location with an accuracy of 100–200 m. The sixth explosion could not be accurately located relative to the others due to the finite size of its source, which introduced significant changes in the differential travel time, depending on the direction to the station. The WCC method was also used to detect and identify weak seismic events within the DPRK Punggye-ri test site using template waveforms from explosions and aftershocks of the fifth and sixth tests, recorded at the IMS array stations KSRS and USRK. Over a five-year observation period, 89 events were detected. Based on estimates of the cross-correlation characteristics of signals at both stations, it was possible to divide the general aftershock sequence into two separate ones associated with processes in the zones of influence of the fifth and sixth explosions.

全文:

受限制的访问

作者简介

I. Kitov

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: irina@idg.ras.ru
俄罗斯联邦, Moscow

I. Sanina

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: irina@idg.ras.ru
俄罗斯联邦, Moscow

S. Volosov

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: irina@idg.ras.ru
俄罗斯联邦, Moscow

N. Konstantinovskaya

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: irina@idg.ras.ru
俄罗斯联邦, Moscow

参考

  1. Адушкин В.В., Турунтаев С.Б. Техногенная сейсмичность — индуцированная и триггерная. М.: ИДГ РАН. 2015. 364 с.
  2. Адушкин В.В., Овчинников В.М., Санина И.А., Ризниченко О.Ю. “Михнево” от сейсмостанции №1 до современной геофизической обсерватории // Физика Земли. 2016. № 1. С. 108–119.
  3. Адушкин В.В., Китов И.О., Санина И.А. Кластеризация афтершоковой активности подземных взрывов в КНДР // Докл. РАН. Науки о Земле. 2021. Т. 501. № 1. С. 69–72. https://doi.org/10.31857/S2686739721110037
  4. Баранов С.В., Шебалин П.Н. Закономерности постсейсмических процессов и прогноз опасности сильных афтершоков. М.: РАН. 2019. 218 с.
  5. Волосов С.Г., Королев С.А., Солдатенков А.М. Система синхронизации записей станций малоапертурной сейсмической антенны “Михнево” // Сейсмические приборы. 2012. Т. 48. № 1. С. 26–34.
  6. Государственная геологическая карта Украины. Центральноукраинская серия. L-37 VIII (Мариуполь), L-37 IX (Таганрог). Масштаб 1:200 000. Пояснительная записка. Киев: ДНВП “Геоинформ Украины”. 2012. http://geoinf.kiev.ua/wp/w/Viewer.php?pr1&umpl37-8&fmpkv_l37-8_1.jpg
  7. Китов И.О., Санина И.А., Сергеев С.С., Нестеркина М.А., Константиновская Н.Л. Обнаружение, оценка магнитуды и относительная локация слабых афтершоков с помощью кросс-корреляции волновых форм: землетрясение 7 августа 2016 г. в Мариуполе // Сейсмические приборы. 2017. Т. 53. № 2. С. 58–80.
  8. Кочарян Г.Г., Локтев Д.Н., Ряховский И.А., Санина И.А. Уникальная научная установка “Среднеширотный комплекс геофизических наблюдений “Михнево” // Геодинамика и тектонофизика. 2022. Т. 13. № 2.
  9. Невский М.В., Чулков А.Б., Морозова Л.А., Еременко О.А. Проблемы и перспективы развития систем сейсмологических наблюдений в XXI веке. Проблемы геофизики XXI века. М.: Наука. 2003. С. 180–212.
  10. Николаев А.В. Проблемы наведенной сейсмичности. Наведенная сейсмичность / А. В. Николаев, И. Н. Галкин (ред.). М.: Наука. 1994. 222 с.
  11. Санина И.А., Габсатарова И.П., Черных О.А., Ризниченко О.Ю., Волосов С.Г., Нестеркина М.А., Константиновская Н.Л. Интеграция малоапертурной группы “Михнево” в систему сейсмических наблюдений на Восточно-Европейской платформе. Сейсмичность Северной Евразии: Материалы Международной конференции / А. А. Маловичко (отв. ред.). 2008. С. 264–268.
  12. Санина И.А., Черных О.А., Ризниченко О.Ю., Волосов С.Г. Малоапертурная сейсмическая антенна “Михнево”: новые возможности изучения сейсмичности Восточно-Европейской платформы // Докл. РАН. 2009. Т. 428. № 4. С. 536–541.
  13. Санина И.А., Иванченко Г.Н., Горбунова Э.М., Константиновская Н.Л., Нестеркина М.А., Габсатарова И.П. Сейсмотектоническая обстановка землетрясения 07 августа 2016г и его афтершоков // Физика Земли. 2019. № 2. С. 156–167. https://doi.org/10.31857/S0002-333720192156-167
  14. Санина И.А., Ризниченко О.Ю., Волосов С.Г., Нестеркина М.А., Константиновская Н.Л. Уникальной научной установке “МИХНЕВО” ИДГ РАН — 15 // Динамические процессы в геосферах. 2019. № 11. С. 48–56. https://doi.org/10.26006/IDG.2019.11.38623
  15. Смирнов В.Б., Пономарев А.В. Физика переходных режимов сейсмичности. М.: РАН. 2020. 412 с.
  16. Султанов Д.Д. Роль Г.А. Гамбурцева в создании сейсмического метода контроля за ядерными испытаниями. М.: ОИФЗ РАН. 1998. Т. 3. C. 188–193.
  17. Федоров Е.К., Тамм И.Е., Семенов Н.Н., Садовский М.А., Пасечник И.П. и др. Доклад совещания экспертов по изучению методов обнаружения нарушений возможного соглашения о приостановке ядерных испытаний // Атомная энергия 1958. Т. 5. Вып. 4.
  18. Adushkin V.V., Kitov I.O., Konstantinovskaya N.L., Nepeina K.S., Nesterkina M.A., Sanina I.A. Detection of ultraweak signals on the Mikhnevo small-aperture seismic array by using cross-correlation of waveforms // Dokl. Earth Sci. 2015. V. 460. № 2. P. 189–191.
  19. Adushkin V.V., Kitov I.O., Sanina I.A. Application of a three-component seismic array to improve the detection efficiency of seismic events by the matched filter method // Dokl. Earth Sci. 2016a. V. 466. №. 1. P. 47–50.
  20. Adushkin V.V., Kitov I.O., and Sanina I.A. Decrease in signal detection threshold by waveform cross correlation method owing to the use of a seismic array of three-component sensors // Geofiz. Issled., 2016b. V. 17. №. 1. P. 5–28. https://doi.org/10.21455/gr2016.1-1
  21. Adushkin V.V., Bobrov D.I., Kitov I.O., Rozhkov M.V., Sanina I.A. Remote detection of aftershock activity as a new method of seismic monitoring // Dokl. Earth Sci. 2017. V. 473. №. 1. P. 303–307.
  22. Bobrov D., Kitov I., Zerbo L. Perspectives of cross correlation in seismic monitoring at the International Data Centre // Pure Appl. Geophys. 2014. V. 171. №. 3–5. P. 439–468.
  23. Bobrov D.I., Kitov I.O., Rozhkov M.V., Friberg P. Towards Global Seismic Monitoring of Underground Nuclear Explosions Using Waveform Cross Correlation. Part I: Grand Master Events // Seismic Instruments. 2016a. V. 52. №. 1. P. 43–59.
  24. Bobrov D.I., Kitov I.O., Rozhkov M.V., Friberg, P. Towards Global Seismic Monitoring of Underground Nuclear Explosions Using Waveform Cross Correlation. Part II: Synthetic Master Events // Seismic Instruments. 2016b. V. 52. №. 3. P. 207–223.
  25. Braun T., Schweitzer J. Spatial noisefield characteristics of a three component small aperture test array in Central Italy // Bull. Seismol. Soc. Am. 2008. V. 98. №. 4. P. 1876–1886.
  26. Bucknam R.C. Geologic effects of the Benham underground nuclear explosion, Nevada Test Site // Bull. Seismol. Soc. of Am. 1969. V. 59. №. 6. P. 2209–2219. https://doi.org/10.1785/BSSA0590062209
  27. Coyne J., D. Bobrov, P. Bormann, E. Duran, P. Grenard, G. Haralabus, I. Kitov, Yu. Starovoit Chapter 15: CTBTO: Goals, Networks, Data Analysis and Data Availability / P. Bormann (ed.). New Manual of Seismological Practice Observatory. 2012. https://doi.org/10.2312/GFZ.NMSOP-2_ch15
  28. Gibbons S.J., Ringdal F. The detection of low magnitude seismic events using array based waveform correlation // Geophys. J. Int. 2006. V. 165. P. 149–166.
  29. Gibbons S.J., Schweitzer J., Ringdal F., Kværna T., Mykkeltveit S., Paulsen B. Improvements to seismic monitoring of the European Arctic using three component array processing at SPITS // Bull. Seismol. Soc. Am. 2011. V. 101. №. 6. P. 2737–2754.
  30. Gibbons S.J., Sorensen M.B., Harris D.B., Ringdal F. The detection and location of low magnitude earthquakes in northern Norway using multichannel waveform correlation at regional distances // Phys. Earth Planet.Inter. 2007. V. 160. N. 3–4. P. 285–309.
  31. Kitov I.O., Volosov S.G., Kishkina S.B., Konstantinovskaya N.L., Nepeina K.S., Nesterkina M.A., and Sanina I.A. Detection of Regional Phases of Seismic Body Waves Using an Array of Three Component Sensors // Seismic Instruments. 2016. V. 52. №. 1. P. 19–31.
  32. Kitov I.O., Sanina I.A. Analysis of Sequences of Aftershocks Initiated by Underground Nuclear Tests Conducted in North Korea on September 9, 2016 and September 3, 2017 // Seism. Instr. 2022. V. 58. P. 567–580. https://doi.org/10.3103/S0747923922050097
  33. Sanina I.A., Gabsatarova I.P., Chernykh O.A., Riznichenko O.U., Volosov S.G., Nesterkina M.A., Konstantinovskaya N.L. The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform // J. Seismol. 2010. V. 15. № 3. P. 545–556.
  34. Schaff D.P., Richards P.G. Repeating seismic events in China // Science. 2004. V. 303. P. 1176–1178.
  35. Schweitzer J., Fyen J., Mykkeltveit S., Gibbons S.J., Pirli M., Kühn D., Kværna T. Seismic arrays, in New Manual of Seismological Practice Observatory / Bormann. P. (ed.). 2012. Ch. 9. https://doi.org/10.2312/GFZ.NMSOP2_ch9
  36. Schaff D. P. and Richards P.G. Improvements in magnitude precision, using the statistics of relative amplitudes measured by cross correlation // Geophys. J. Int. Seismology. 2014. V. 197. № 1. P. 335–350. https://doi.org/10.1093/gji/ggt433
  37. Van Trees H.L. Detection, Estimation and Modulation Theory. 1968. JohnWileyandSons.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Waveform templates for the C00 channel from the 2013 event with a length of 15 s. Filters are indicated in the upper right corner of each waveform panel: 1 — (0.5–2) Hz, 2 — (1–3) Hz, 3 — (2–4) Hz, 4 — (3–6) Hz, 5 — (4–8) Hz, and 6 — (6–12) Hz.

下载 (170KB)
3. Fig. 2. Signal detection using cross-correlation on the Mikhnevo group. From left to right: SNCcc for the following master/target event pairs 2013/2009, 2009/2013, 2013/2006. The signal from the 2006 event has SNRcc = 3.8. Detection threshold SNRcc = 3.5.

下载 (125KB)
4. Fig. 3. Dependence of SNR for normal and cross-correlation traces on the noise level. The Y-axis is on a logarithmic scale.

下载 (163KB)
5. Fig. 4. Relative locations of the epicenters of the five announced explosions in the DPRK.

下载 (51KB)
6. Fig. 5. Records of the main event in the Mikhnevo (a) and Rostov-Don (b) groups. Conversion factors for: MHVAR — 7.45 10-6 μm/s, RD — 3.16 10-3 μm/s [Sanina et al., 2019].

下载 (161KB)
7. Fig. 6. Seismic records on two small-aperture arrays “Mikhnevo” (top) and “Rostov-Don” (bottom) and an example of joint location in the inset. Vertical lines P and S mark the arrivals of longitudinal and transverse waves [Sanina et al., 2019].

下载 (153KB)
8. Fig. 7. Examples of records on seismic arrays: stationary MHVAR (a) and time RD (b) of the aftershock of the Mariupol earthquake of August 11, 2016, source time 21:59:30. The records are filtered in the 1–5 Hz band, the channels are vertical, the channel names are given on the left, the amplitude scale on the record is on the right, the values ​​are given in ADC readings. Conversion factors: for MHVAR — 7.45 10-6 μm/s, for RD — 3.16 10-3 μm/s [Sanina et al., 2019].

下载 (548KB)
9. Fig. 8. Compilation scheme of neotectonic faults and lineaments (compiled based on the works [Kitov et al., 2017; Sanina et al., 2019]). 1–2 — neotectonic faults (based on the materials of [Gosudarstvennaya..., 2012]): 1 — major, 2 — minor; 3 — lineaments; 4, 5 — epicenter of the earthquake of 07.08.2016 (a) and its aftershocks (b); number — number; numbers in circles — fault numbers: 1 — Maloyanisolsky, 2 — Kalmiusky, 3 — Primorsky.

下载 (170KB)
10. Fig. 9. The DPRK-5 aftershocks (red circles) are above the X-axis, which serves as the decision line. The DPRK-6 aftershocks (black diamonds) are below this line. There are weak events that cannot be assigned to either of the two populations due to their low SNRcc values. The first DPRK-5 aftershock and the events following DPRK-6 serve as references to distinguish between the two aftershock sequences. The second aftershock on 03/09/2017 belongs to the DPRK-5 cluster.

下载 (109KB)

版权所有 © Russian academy of sciences, 2025