On the Pseudo-Thellier Method for Single-Domain Non-Interacting Particles. Theory and Experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The pseudo-Thellier method was numerically simulated based on a rigorous solution of kinetic equations for uniaxial, chaotically oriented, non-interacting single-domain particles. Laboratory experiments were performed to determine the relative paleointensity Ban with thermoremanent magnetization (TRM) created on samples of igneous rocks in random fields Вrf. The domain structure of grains of these samples varies from single- to multi-domain. Both theoretical and experimental pseudo-Arai diagrams can be divided into two quasi-rectilinear sections, one of which is located in a relatively low-coercivity region Bc < 40-50 mT, and the second — at higher amplitudes of the alternating field (AF). Determinations of the relative paleointensity Ban on igneous rocks bearing TRM, performed on low-coercivity segments of pseudo-Arai diagrams, give quite satisfactory results with a linear correlation coefficient R = 0.8 between the true field Вrf and Ban, determined using the pseudo-Thellier method.

It is shown that when taking into account thermal fluctuations for relatively magnetically soft and small particles (which corresponds to low blocking temperatures), there is a significant difference between the coercive force of a particle Bcr and the actual field of its magnetization (demagnetization). The main conclusion of the work is that the application of the pseudo-Thellier method to igneous rocks is a promising direction, and its development in both methodological and practical aspects can bring interesting results, especially when applied to samples that are unstable to magnetomineralogical changes in the process of applying the classical Thellier method.

Full Text

Restricted Access

About the authors

V. P. Shcherbakov

Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Author for correspondence.
Email: shcherbakovv@list.ru
Russian Federation, Borok, Yaroslavl Region

N. K. Sycheva

Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: shcherbakovv@list.ru
Russian Federation, Borok, Yaroslavl Region

N. А. Afinogenova

Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: shcherbakovv@list.ru
Russian Federation, Borok, Yaroslavl Region

М. А. Smirnov

Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: shcherbakovv@list.ru
Russian Federation, Borok, Yaroslavl Region

G. V. Zhidkov

Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: shcherbakovv@list.ru
Russian Federation, Borok, Yaroslavl Region

References

  1. Афремов Л.Л., Харитонский П.В. О магнитостатическом взаимодействии в ансамбле растущих однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. № 2. 1988. С. 101–105.
  2. Белоконь В.И., Нефедев К.В. Функция распределения случайных полей взаимодействия в неупорядоченных магнетиках. Спиновое и макроспиновое стекло // Журнал экспериментальной и теоретической физики. 2001. Т. 120. Вып. 1(7). С. 156–164.
  3. Большаков А.С., Щербакова В.В. Термомагнитный критерий определения доменной структуры ферромагнетиков // Изв. АН СССР. Сер. Физика Земли. 1979. № 2. C.38–47.
  4. Методы палеомагнитных исследований горных пород [Текст] / В.И. Белоконь, В.В. Кочегура, Л.Е. Шолпо; М-во геологии СССР. Всесоюз. науч.-исслед. геол. ин-т “ВСЕГЕИ”. Л.: Недра. Ленингр. отд-ние. 1973. 247 с.
  5. Кузина Д.М., Щербаков В.П., Сальная Н.В., Юсупова А.Р., Ли Х.Ч., Нургалиев Д.К. Относительная палеонапряженность геомагнитного поля за последние 9000 лет по донным осадкам озера Шира, северная Хакасия, определенная по методу псевдо-Телье // Физика Земли. 2024. С. 161–168. doi: 10.31857/S0002333724040111
  6. Сычев А.Н., Смирнов М.А., Виноградов Ю.К. Трехкомпонентный программируемый термомагнитометр. Научно-практическая конференция “Научное приборостроение — современное состояние и перспективы развития”, Москва, 15–16 ноября 2016 г. Сборник материалов. М.: “Богородский печатник”. 2016. С. 200–202. ISBN 978-5-89589-102-5.
  7. Щербаков В.П., Сычева Н.К. Теория безгистерезисной остаточной намагниченности однодоменных зерен // Физика Земли. 2023. № 5. С. 3–12. doi: 10.31857/S0002333723050095
  8. Щербаков В.П., Сычева Н.К. Теория безгистерезисной остаточной намагниченности для хаотически ориентированных в пространстве одноосных однодоменных частиц // Физика Земли. 2024. № 6. С. 3–12.
  9. Щербаков В.П., Щербакова В.В. О магнитостатическом взаимодействии в системе однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. 1975. № 9. С. 101 — 104.
  10. Brown W.F. Thermal fluctuation of a single-domain particle // Phys. Rev. 1963. V. 130. P. 1677–1686.
  11. Dekkers M.J., Böhnel H.N. Reliable absolute palaeointensities independent of magnetic domain state // Earth Planet. Sci. Lett. 2006. V. 248. P. 507–516.
  12. de Groot L.V., Biggin A.J., Dekkers M.J., Langereis C.G., Herrero-Bervera E. Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record // Nat. Commun. 2013. №4. doi: 10.1038/ncomms3727
  13. Dunlop D., Ozdemir O. Rock magnetism. Fundamentals and frontiers. Cambridge University Press. 1997. 573 p.
  14. Egli R. Theoretical considerations on the anhysteretic remanent magnetization of interacting particles with uniaxial anisotropy // J. Geophys. Res. 2006. V. 111. B12S18, doi: 10.1029/2006JB004577
  15. Le Mouël J.L., P. Shebalin, A. Khokhlov Earth magnetic field modeling from Oersted and Champ data // Earth Planet. Space. 2010. V. 62. P. 1–10.
  16. Kruiver P., Kok Y., Dekkers M., Langereis C., Laj C. A pseudo-Thellier relative palaeointensity record, and rock magnetic and geochemical parameters in relation to climate during the last 276 kyr in the Azores region // Geophysical Journal International. 1999. V. 136. P. 757–770. https://doi.org/10.1046/j.1365-246x.1999.00777.x
  17. Néel L. Some theoretical aspects of rock-magnetism // Advances in Physics. 1955. № 4(14). P. 191–243. https://doi.org/10.1080/00018735500101204
  18. Paterson Greig A., Heslop David and Yongxin Pan The pseudo-Thellier palaeointensity method: new calibration and uncertainty estimates // Geophys. J. Int. 2016. V. 207. P. 1596–1608. doi: 10.1093/gji/ggw349
  19. Shcherbakov V.P., Lhuillier F., Sycheva N.K. Exact Analytical Solutions for Kinetic Equations Describing Thermochemical Remanence Acquisition for Single-Domain Grains: Implications for Absolute Paleointensity Determinations // JGR Solid Earth. 2021. V. 126. Is. 5. P. 1–24. doi: 10.1029/2020JB021536
  20. Shcherbakova V.V., Shcherbakov V.P., Heider F. Properties of partial thermoremanent magnetization in PSD and MD magnetite grains // J.Geophys. Res. 2000. V.105. № B1. P. 767–782.
  21. Smirnov M., Sychev A., Salnaia N., Minaev P., Powerman V., Veselovskiy R. “ORION”– the versatile Full-vector Sample Magnetometer for Paleointensity, Rock Magnetic and Paleomagnetic Studies // Geophysical Research Abstracts. 2019. V. 21. EGU2019-5608. EGU General Assembly 2019.
  22. Tauxe L., Pick T., Kok Y. S. Relative paleointensity in sediments: A pseudo-Thellier approach // Geophys. Res. Lett. 1995. V. 22. P. 2885– 2888.
  23. Veselovskiy R.V., Samsonov A.V., Stepanova A.V., Salnikova E.B., Larionova Y.O., Travin A.V., Arzamastsev A.A., Egorova S.V., Erofeevac K.G., Stifeeva M.V., Shcherbakova V.V., Shcherbakov V.P., Zhidkov G.V., Zakharov V.S. 1.86 Ga key paleomagnetic pole from the Murmansk craton intrusions — Eastern Murman Sill Province, NE Fennoscandia: Multidisciplinary approach and paleotectonic applications // Precambr. Res. 2019. V. 324. P. 126–145. doi.org/10.1016/j.precamres.2019.01.017

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Acquisition curves of pARM in a constant field Bdc = 50 μTl as a function of the amplitude of the applied alternating field Baf (mTl). The cut-off of all ARM (Baf) curves on the left is due to the fact that the ARM value is zero at Baf < Bdb. (a) - Bc = 30 mTl, ψ = 0; (b) - Bc = 30 mTl, ψ = π / 4; (c) - Bc = 60 mTl, ψ = 0; (d) - Bc = 60 mTl, ψ = π / 4. The coercivity parameter and particle size d = v1/3 are indicated by numbers at the curves. The particle volume v was calculated from the condition at Ms = 480 kA/m, Tr = 300°K (recall that, according to (4), the critical remagnetisation field Bcr for ψ = π / 4 is two times smaller than for ψ = 0 at the same microcoercivity Bc).

Download (357KB)
3. Fig. 2. Dependence of the deblocking field amplitude Bdb on the coercivity parameter g. Crosses - calculation by approximate formulas (8) - (a), ψ = π / 4 and (9) - (b), ψ = 0; triangles - estimation of Bdb from curves in diagrams (1). The curves in the lower half of the diagrams are plotted for Bc = 30 mTl, in the upper half for Bc = 60 mTl. Horizontal lines in the middle of the diagrams correspond to the value of Bcr (ψ) for the points in the lower part of the figures, the same lines at the top mark the value of Bcr for the points in the upper part of the figures.

Download (161KB)
4. Fig. 3. Histograms of distribution of Bc, v, g values: the upper row of graphs is for scenario 1 (table), the lower row is for scenario 2.

Download (797KB)
5. Fig. 4. Pseudo-Arai diagrams constructed from the results of modelling of the pseudo-Tellier technique. The Baf amplitude (mTl) is shown by numbers at the points in the diagrams: (a) - scenario 1 (table); (b) - scenario 2. The data are normalised to the full TRM.

Download (200KB)
6. Fig. 5. Dependence of ARM/TRM ratio on Vs for d = 30 nm (curve 1), 50 nm (curve 2), and 70 nm (curve 3).

Download (77KB)
7. Fig. 6. Collection of dolerite sills from the Murmansk Craton: (a) - correlation relation between ARM and TRM, R - correlation coefficient; (b) - comparison of the value of the external field Vdr determined by the pseudo-Telier method in the field Vlab = 50 μTl with the true field Vsl, in which TRM was acquired, used to determine the relative paleonavoltage Vdr. In total, the results for 35 samples are presented in each of the diagrams.

Download (143KB)
8. Fig. 7. Examples of Vdr determination by the pseudo-Tellier method on samples from the collection of dolerite sills of the Murmansk craton: (a) - sample 15, Vsl = 150 μTl, Vdr = 215 μTl; (b) - sample 719, Vsl = 73 μTl, Vdr = 144 μTl; (c) - sample 269, Vsl = 88 μTl, Vdr = 123. 7 μTl; (d) - sample 242 is presented as an example of an uninterpretable diagram, when it is impossible to identify a sufficiently long rectilinear section on it.

Download (355KB)
9. Fig. 8. Domain structure evaluation by thermomagnetic criterion: dashed lines mark the upper temperature T2 of the pTRM creation interval (T2, T1). (a), (b) and (c) - HUW sample; (d), (e) and (f) - D37 sample.

Download (306KB)
10. Fig. 9. Determinations of Vdr in the field Vlab = 50 μTl by the pseudo-Telier method on artificial samples containing OD grains of cation-deficient magnetite: (a) - sample HUW, Vdr = 180 μTl; (b) - sample D37, Vdr = 240 μTl.

Download (183KB)

Copyright (c) 2025 Russian academy of sciences