Theory of Anhysteretic Remanent Magnetization for Randomly Spatially Oriented Uniaxial Single-Domain Particles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

A generalization of the theory of formation of anhysteretic remanent magnetization (ARM) is generalized for noninteracting randomly spatially oriented uniaxial single-domain particles. It is shown that approximate expressions for the ARM intensity, which have been proposed in (Schcherbakov and Shcherbakova, 1977; Victora, 1989; Egli, 2002), are quite admissible for obtaining estimates. However, our calculations have revealed a striking discrepancy between theoretical conclusions and experimental results. It follows from the theory that the ARM intensity exceeds by several times the thermoremanent magnetization (TRM) intensity, while experiments lead to the inverse relation between ARM and TRM. For resolving this paradox and for explaining the mechanism of ARM formation in rocks, it is necessary to supplement the theory proposed here by including the magnetostatic interactions; as regards experimental verification, it is necessary to carry out experiments with ARM and TRM for ensembles of noninteracting grains (i.e., for their very low concentration in the sample).

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Shcherbakov

Geophysical Observatory “Borok”, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: shcherbakovv@list.ru
Ресей, Borok, Yaroslavl oblast, 152742

Әдебиет тізімі

  1. Афремов Л.Л., Харитонский П.В. О магнитостатическом взаимодействии в ансамбле растущих однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. 1988. № 2. С. 101–105.
  2. Белоконь В.И., Нефедев К.В. Функция распределения случайных полей взаимодействия в неупорядоченных магнетиках. Спиновое и макроспиновое стекло // Журнал экспериментальной и теоретической физики. 2001. Т. 120. Вып.1 (7). С. 156–164.
  3. Борисова Г.П., Шолпо Л. Е. О возможности статистических оценок палеонапряженности геомагнитного поля // Изв. АН СССР. Сер. Физика Земли. 1985. № 7. С. 71–79.
  4. Методы палеомагнитных исследований горных пород [Текст] / В.И. Белоконь, В.В. Кочегура, Л.Е. Шолпо (ред.). Мин. геологии СССР. Всесоюз. науч.-исслед. геол. ин-т (ВСЕГЕИ). Л.: Недра. Ленингр. отд-ние. 1973. 247 с.
  5. Нагата Т. Магнетизм горных пород. М.: Мир. 1965. 348 c.
  6. Щербаков В.П., Щербакова В.В. К расчету термоостаточной и идеальной намагниченностей ансамбля взаимодействующих однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. 1977. № 6. С. 69–83.
  7. Щербаков В.П., Сычева Н.К. Теория безгистерезисной остаточной намагниченности однодоменных зерен // Физика Земли. 2023. № 5. С. 3–12. doi: 10.31857/S0002333723050095
  8. Brown W. F. Thermal fluctuation of a single-domain particle // Phys. Rev. 1963. V. 130. P. 1677–1686.
  9. Dekkers M.J., Böhnel H.N. Reliable absolute palaeointensities independent of magnetic domain state // Earth Planet. Sci. Lett. 2006. V. 248. P. 507–516.
  10. de Groot L.V., Biggin A.J., Dekkers M.J., Langereis C.G., Herrero-Bervera E. Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record // Nat. Commun. 2013. № 4. doi: 10.1038/ncomms3727
  11. Dunlop D., Ozdemir O. Rock magnetism. Fundamentals and frontiers. Cambridge University Press. 1997. 573 p.
  12. Egli R., Lowrie W. Anhysteretic remanent magnetization of fine magnetic particles //
  13. Journal of Geophysical Research. 2002. V. 107. № B10, 2209. doi: 10.1029/2001JB000671
  14. Jaep W. F. Anhysteretic magnetization of an assembly of single-domain Particles // J. Appl. Phys. 1969. V. 40. P. 1297–1298.
  15. Paterson Greig A., Heslop David and Yongxin Pan The pseudo-Thellier palaeointensity method: new calibration and uncertainty estimates // Geophys. J. Int. 2016. V. 207. P. 1596–1608. doi: 10.1093/gji/ggw349
  16. Shaw J. A new method of determining the magnitude of the paleomagnetic field // Geophys. J. R. Astron. Soc. 1974. V. 39. P. 133–141.
  17. Shcherbakov V.P., Sycheva N.K., Lamash B.E. Monte Carlo modelling of TRM and CRM acquisition and comparision of their properties in an ensemble of interacting SD grains // Geophys. Res. Lett. 1996. V. 26. № 20. P. 2827–2830.
  18. Shcherbakov V. P., Lhuillier F., Sycheva N. K. Exact Analytical Solutions for Kinetic Equations Describing Thermochemical Remanence Acquisition for Single-Domain Grains: Implications for Absolute Paleointensity Determinations // JGR Solid Earth. 2021. V. 126. Is. 5. P. 1-24. doi: 10.1029/2020JB021536
  19. Stacey F.D., Banerjee S.K. The physical principles of the rock magnetism. Amsterdam: Elsevier. 1974. 195 p.
  20. Stoner E.C., Wohlfarth E.P. Coercive force of fine particles // Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. 1948. V. 240. P. 599–601. doi: 10.1098/rsta.1948.0007
  21. Sugiura N. ARM, TRM, and magnetic interactions: concentration dependence // Earth Planet. Sci. Lett. 1979. V. 42. P. 451–455.
  22. Tauxe L., Pick T., Kok Y. S. Relative paleointensity in sediments: A pseudo-Thellier approach // Geophys. Res. Lett. 1995. V. 22. P. 2885–2888.
  23. Victora R. H. Predicted time dependence of the switching field for magnetic materials // Phys. Rev. Lett. 1989. V. 63. P. 457–460.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. 1. (a) — Diagram of the relative position of the vectors of the external magnetic field B, the magnetic moment of the particle m and the light axis of the particle l; (b) — E(q) at y = p/4, b = 0.0 (black line), 0.25 (gray line), 0.5 (dotted line); (c) — E(q) at y = p/4, b = 0.0 (black line), -0.25 (gray line), -0.5 (dotted line). According to (4), bcr(p/4) = 0.5, so that the curves E(q) at b = 0.5 and b = -0.5 in Figures 1b and 1b correspond to the situation of remagnetization (collapse of the metastable minimum and maximum into one point).

Жүктеу (321KB)
3. 2. The values of potential barriers DEn1(y,b) (black line) and DEn2(y,b) (gray line) as functions of the applied field b for b > 0: (a) y = (1/20)p; (b) y = (1/4)p; (c) y = (9/20)p. The dotted line shows the result of DEn2(y,b) calculation based on approximation (5).

Жүктеу (278KB)
4. 3. The value of the normalized potential barrier DE2.1[y,b(t)]/mBc as a function of time t for the first 5 periods: (a) y = (1/20)p; (b) y = (1/4)p; (c) y = (9/20)p.

Жүктеу (351KB)
5. 4. h = 0.001, n = 1000, g = 200, y = p/4. Graphs of y(t) calculated using formula (11) with the value of the potential barrier determined by formula (9). The gray line represents the solution (11) using approximation (5) for the magnitude of the potential barrier.

Жүктеу (183KB)
6. 5. h = 0.001, n = 1000. (a) is a graph of the intensity y(y,g) as a function of y calculated using formulas (11) and (9) for various values of the coercive force parameters g; (b) 1 is the intensity ARM(g) obtained by averaging y (y, g) by y (curve 1); 2 — ARM(g), calculated using approximation (5) for the value of the potential barrier; 3 — ARM(g), obtained by approximate formula (15); 4 — dependence of TRM(g).

Жүктеу (424KB)

© Russian Academy of Sciences, 2025