Paleomagnetism of the Miocene Magmatic Rocks of the Southern Kamchatka

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Reconstruction of the tectonic evolution of Kamchatka is extremely important for understanding the formation mechanisms of folded belts and development of subduction systems. In this context, obtaining reliable paleomagnetic data from poorly studied segments of the Koryak-Kamchatka folded region, such as southern Kamchatka, is essential. This paper presents the first paleomagnetic data from the Miocene magmatic rock bodies of the Pribrezhny complex, which is widespread along the Pacific coast of southern Kamchatka. Based on 33 sites, the paleomagnetic pole for the Miocene of the southern Kamchatka was calculated, which is statistically significantly different from all published Cenozoic poles for nearby regions. The new data suggest that Miocene volcanic rocks formed at a paleolatitude close to their current position (52.3°), and indicate the origin of the Miocene supra-subduction volcanic belt on the more ancient base of the Olyutor-Kamchatka folded system, and not within a separate exotic block. It is shown that most of the sampled volcanics were formed before the main phase of tectonic deformations, but at least some of the studied bodies of normal polarity contain post-folding magnetization and may represent products of younger magmatic episodes.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Latyshev

Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: anton.latyshev@gmail.com
Ресей, Moscow; Moscow; Petropavlovsk-Kamchatsky

M. Anosova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences

Email: anton.latyshev@gmail.com
Ресей, Moscow; Petropavlovsk-Kamchatsky

E. Latanova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; MISIS National University of Science and Technology

Email: anton.latyshev@gmail.com
Ресей, Moscow; Moscow

O. Bergal-Kuvikas

Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences; Vitus Bering Kamchatka State University

Email: anton.latyshev@gmail.com
Ресей, Petropavlovsk-Kamchatsky; Petropavlovsk-Kamchatsky

Әдебиет тізімі

  1. Авдейко, Г.П., Палуева, А.А., Хлебородова, О.А. Геодинамические условия вулканизма и магмообразования Курило-Камчатской островодужной системы // Петрология. 2006. № 14 (3). С. 248-265.
  2. Бергаль-Кувикас О.В., Латышев А.В., Аносова М.Б., Латанова Е.А. Экспедиция по изучению миоценовых магматических пород Южной Камчатки // Вестник КРАУНЦ. Серия: Науки о Земле. 2022 № 4. С. 123–129.
  3. Богданов Н.А., Чехович В.Д. О коллизии Западно-Камчатской и Охотоморской плит // Геотектоника. 2002. №1. С. 72–85.
  4. Гапеев А.К., Цельмович В.А. Стадии окисления титаномагнетитовых зерен в изверженных породах // Деп. ВИНИТИ N1331-В89. М. 1989.
  5. Казанский А.Ю., Водовозов В.Ю., Гладенков А.Ю., Гладенков Ю.Б., Трубихин В.М. Магнитостратиграфия опорного разреза морского кайнозоя Западной Камчатки (бухта Квачина) // Стратиграфия. Геологическая корреляция. 2021. № 29–1. С. 99–115.
  6. Коваленко Д.В. Палеомагнетизм палеогеновых комплексов п-ова Ильпинский // Геотектоника. 1992. № 5. С. 78–95.
  7. Коваленко Д.В. Палеомагнетизм геологических комплексов Камчатки и южной Корякии. Тектоническая и геофизическая интерпретация. М.: Научный мир. 2003. 256 с.
  8. Коваленко Д.В., Чернов Е.Е. Палеомагнетизм и тектоническая эволюция Камчатки и юга Корякии // Тихоокеанская геология. 2003. Т. 22. № 3. С. 48–73.
  9. Никишин А.М., Гревцев А.В., Малышев Н.А. История формирования осадочных бассейнов морей Дальнего Востока и Восточной Арктики. Геология полярных областей Земли. Материалы XLII Тектонического совещания. 2009. Т. 2. С. 85–88.
  10. Сляднев Б.И. и др. Государственная геологическая карта Российской Федерации. Масштаб 1: 1 000 000 (третье поколение). Серия Корякско-Камчатская. Лист N57 — Петропавловск-Камчатский. Объяснительная записка. ВСЕГЕИ. 2006. 376 с.
  11. Соловьев А.В., Шапиро М.Н., Гарвер Дж.И., Ландер А.В. Формирование Восточно-Камчатской аккреционной призмы по данным трекового датирования цирконов из терригенных пород // Геология и геофизика. 2004. Т. 45. № 11. С. 1292—1302.
  12. Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит методами трекового датирования и структурного анализа. М.: Наука. 2008. Тр. ГИН. Вып. 577. 319 с.
  13. Ханчук А.И., Гребенников А.В. Позднемиоцен-плиоценовая трансформная окраина Камчатки // Тихоокеанская геология. 2021. Т. 40. № 5. С. 3–15.
  14. Цуканов Н.В., Лучицкая М.В., Портнягин М.В., Савельев Д.П., Соловьев А.В., Hourigan J.K. Габбро-гранодиоритовый магматический комплекс Кроноцкой палеодуги (восточная Камчатка): возраст, состав и тектоническое положение // Геотектоника. 2022. № 5. С. 50–75.
  15. Шапиро М.Н. Позднемеловая Ачайваям-Валагинская вулканическая дуга (Камчатка) и кинематика плит северной Пацифики // Геотектоника. 1995. №1. С. 58–70.
  16. Шапиро М.Н., Соловьев А.В. Кинематическая модель формирования Олюторско-Камчатской складчатой области // Геология и геофизика. 2009. Т. 50. № 8. С. 863–880.
  17. Шеймович В.С., Патока М.Г. Геологическое строение зон активного кайнозойского вулканизма. М.: Недра. 1989. 207 c.
  18. Шеймович В.С. и др. Государственная геологическая карта Российской Федерации. Масштаб 1: 200 000. Серия Южно-Камчатская. Листы N-57-XXI (Северные Коряки), N-57-XXVII (Петропавловск-Камчатский), N-57-XXXIII (Мутновская сопка). Объяснительная записка. М., 2000. 302 с.
  19. Bazhenov M.L., Zharov A.E., Levashova N.M., Kodama K., Bragin N.Y., Fedorov P.I., et al. Paleomagnetism of a Late Cretaceous island arc complex from South Sakhalin, East Asia: Convergent boundaries far away from the Asian continental margin? // Journal of Geophysical Research. 2001. V.106 (B9). P. 19,193–19,205.
  20. Bergal-Kuvikas O., Bindeman I., Chugaev A., Larionova Y., Perepelov A., Khubaeva O. Pleistocene-Holocene monogenetic volcanism at the Malko-Petropavlovsk zone of transverse dislocations on Kamchatka: Geochemical features and genesis // Pure and Applied Geophysics. 2022. V. 179 (11). P. 3989–4011.
  21. Day R., Fuller M., Schmidt V.A. Hysteresis properties of titanomagnetites: Grain size and composition dependence // Phys. Earth Planet. Inter. 1977. V. 13. P. 260–267.
  22. Debiche M.G., Watson G.S. Confidence limits and bias correction for estimating angles between directions with applications to paleomagnetism. // J. Geophys. Res. 1995. V. 100. № B12. P. 24,405–24,430 (92JB01318).
  23. Dunlop D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data // J. Geophys. Res. 2002. V. 107. P. 1—22.
  24. Enkin R.J. A computer program package for analysis and presentation of paleomagnetic data. Pacific Geoscience Centre, Geological Survey of Canada. 1994. 16 p.
  25. Fisher R. Dispersion on a sphere // Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences. 1953. V. 217 (1130). P. 295–305.
  26. Haggerty S.E. Oxidation of opaque mineral oxides in basalts. Oxide Minerals: Reviews in Mineralogy / Rumble D. (ed.). 1976. № 3. P. 1–98.
  27. Kirschvink J.L. The leastsquare line and plane and the analysis of paleomagnetic data // Geophys. J.R. Astron. Soc. 1980. V. 62. P. 699–718.
  28. Konstantinov K.M., Bazhenov M.L., Fetisova A.M., Khutorskoy M.D. Paleomagnetism of trap intrusions, East Siberia: Implications to flood basalt emplacement and the Permo-Triassic crisis of biosphere // Earth Planet. Sci. Lett. 2014. https://doi.org/10.1016/j.epsl.2014.03.029.
  29. Lander A.V., Shapiro M.N. The origin of the modern Kamchatka subduction zone / J. Eichelberger, E. Gordeev, M. Kasahara, P. Izbekov, J. Lees (eds.). Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs: Geophysical monograph series. 2007. V. 172. P. 57–64.
  30. Latyshev A.V., Veselovskiy R.V., Ivanov A.V. Paleomagnetism of the Permian-Triassic intrusions from the Tunguska syncline and the Angara-Taseeva depression, Siberian Traps Large Igneous Province: Evidence of contrasting styles of magmatism // Tectonophysics. 2018. https://doi.org/10.1016/j.tecto.2017.11.035
  31. Latyshev A., Krivolutskaya N., Ulyakhina P., Fetisova A., Veselovskiy R., Pasenko A., Khotylev A., Anosova M. Paleomagnetism of the Permian-Triassic intrusions of the Norilsk region (the Siberian platform, Russia): Implications for the timing and correlation of magmatic events, and magmatic evolution // Journal of Asian Earth Sciences. 2021. V. 217. P. 104858. doi: 10.1016/j.jseaes.2021.104858
  32. Latyshev A., Radko V., Veselovskiy R., Fetisova A., Krivolutskaya N., Fursova S. Reconstruction of the Magma Transport Patterns in the Permian-Triassic Siberian Traps from the Northwestern Siberian Platform on the Basis of Anisotropy of Magnetic Susceptibility Data // Minerals. 2023. V.13. P.446. https://doi.org/10.3390/min13030446
  33. Levashova N.M., Shapiro M.N., Bazhenov M.L. Late Cretaceous paleomagnetic data from the Median Range of Kamchatka, Russia: tectonic implications // Earth and planetary science letters. 1998. V. 163 (1–4). P. 235–246.
  34. Levashova N.M., Shapiro M.N., Beniamovsky V.N., Bazhenov M.L. Paleomagnetism and geochronology of the Late Cretaceous‐Paleogene island arc complex of the Kronotsky Peninsula, Kamchatka, Russia: Kinematic implications // Tectonics. 2000. V. 19 (5). P. 834–851.
  35. Liu Q., Deng C., Yu Y., Torrent J., Jackson M.J., Banerjee S.K., Zhu R. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols // Geophysical Journal International. 2005. V. 161 (1). P. 102–112. doi: 10.1111/j.1365-246X.2005.02564.x
  36. McEnroe S.A. North America during the Lower Cretaceous: new palaeomagnetic constraints from intrusions in New England // Geophys. J. Int. 1996. V. 126. P. 417–494.
  37. McFadden P.L., McElhinny M.W. Classification of the reversal test in palaeomagnetism // Geophys. J. Int. 1990. https://doi.org/10.1111/j.1365-246X.1990.tb05683.x
  38. Pechersky D.M., Levashova N.M., Shapiro M.N., Bazhenov M.L., Sharonova Z.V. Paleomagnetism of Palaeogene volcanic series of the Kamchatsky Mys Peninsula, East Kamchatka: the motion of an active island arc // Tectonophyslcs. 1997. V. 273. P. 219–237.
  39. Vaes B., van Hinsbergen D. J. J., Boschman L. M. Reconstruction of subduction and back‐arc spreading in the NW Pacific and Aleutian Basin: Clues to causes of Cretaceous and Eocene plate reorganizations // Tectonics. 2019. V. 38. P. 1367–1413.
  40. Veselovskiy R.V., Dubinya N.V., Ponomarev A.V., Fokin I.V., Patonin A.V., Pasenko A.M., Fetisova A.M., Matveev M.A., Afinogenova N.A., Rud’ko D.V., Chistyakova A.V. Shared research facilities “Petrophysics, geomechanics and paleomagnetism” of the Schmidt Institute of Physics of the Earth RAS // Geodynamics & Tectonophysics. 2022. V.13 (2). P. 579. doi: 10.5800/GT-2022-13-2-0579
  41. Watson G., Enkin R. The fold test in paleomagnetism as a parameter estimation problem // Geophysical Research Letters. 1993. V. 20 (19). P. 2135–2137. 1993. doi: 10.1029/93gl01901
  42. Zijderveld J.D.A. AC demagnetization of rocks: Analysis of results. Methods in Palaeomagnetism. 1967. https://doi.org/10.1016/j.neuroscience.2010.03.066
  43. Zonenshain L.P, Kuzmin, M.I., and Natapov L.M. Geology of the USSR: A Plate-Tectonic Synthesis. Geodynamics Series. AGU, Washington, D.C. 1990. V. 21. 242 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geological scheme of the area (according to [Sheimovich and Patoka, 1989, with modifications]): 1 - Eocene-Quaternary terrigenous sediments; 2 - Pleistocene-Holocene volcanogenic formations; 3 - Pliocene volcanic rocks predominantly of basalt-andesibasalt composition; 4 - Pliocene-Pleistocene volcanic rocks predominantly of dacite-rhyolite composition; 5 - Miocene magmatic formations of the coastal complex; 6 - Cretaceous magmatic and metamorphic formations; 7 - large Quaternary volcanic centres; 8 - sampling points; 9 - boundaries of the Malko-Petropavlovsk zone of transverse dislocations. The inset shows the boundaries of tectonic zones according to [Zonenshain et al., 1990; Nikishin et al., 2009], with changes: I - Koryak-West Kamchatka terrane belt; II - Olyutor-Middle Kamchatka terrane belt; III - Kronotsky terrane.

Жүктеу (514KB)
3. Fig. 2. Electron microscopic images of magnetic minerals in the studied igneous rocks: (a) - homogeneous unaltered crystals of titanomagnetite in gabbroids, site 17. 2-21; (b) - magnetite grains with structures of high-temperature heterophase oxidation, granodiorites, site 19-22; (c) - large magnetite grain with structures of single-phase oxidation, andesite dyke, site 10-22; (d) - primary magmatic inclusions of magnetite in amphibole, granodiorites of the Akhomten massif, site 19-22; (e) - magnetite with ilmenite lamellae in gabbroids, site 21-21; (f) - pyrite accumulation in rhyolites, site 6-21.

Жүктеу (583KB)
4. Fig. 3. Magnetic properties of the studied samples. (a)-(d) - temperature curves of magnetic susceptibility dependence: (a) - site 21-21, gabbro; (b) - site 11-21, andesites; (c) - site 19-22, granodiorites; (d) - site 6-21, rhyolites. (e) - Day-Dunlop diagram [Day et al., 1977; Dunlop, 2002]. Ms - saturation magnetisation, Mrs - residual saturation magnetisation, Hc - coercivity, Hcr - residual coercivity. Fields in the diagram: SD - single-domain grains, PSD - pseudo-single-domain grains, MD - multi-domain grains.

Жүктеу (232KB)
5. Fig. 4. Results of temperature demagnetisation and alternating field cleaning: (a) sample 219, site 18-22 (rhyolitic tuffs); (b) sample 193, site 16-22 (andesites); (c) sample 241, site 20-22 (montsodiorites); (d) sample 151, site 12-22 (andesites); (e) sample 195, site 17.2-21 (dolerites); (f) sample 181, site 7-21 (basalts). The coordinate system is stratigraphic.

Жүктеу (529KB)
6. Fig. 5. Distribution of average palaeomagnetic directions by sites: (a) - geographic coordinate system; (b) - stratigraphic coordinate system. Filled circles - direct polarity, hollow circles - reverse polarity.

Жүктеу (151KB)
7. Fig. 6. (a) - Mean directions for directional groups: I - forward polarity, geographic coordinate system; II - reverse polarity, stratigraphic coordinate system. The asterisk shows the direction of the modern geomagnetic field; (b) - Palaeomagnetic pole for the Miocene of southern Kamchatka and its comparison with published data. 1 - mean pole for Miocene volcanics of the coastal complex (this paper); 2-5 - results of predecessors: 2 - Eocene, Kronotsky terrane [Levashova et al., 2000]; 3 - Eocene-Oligocene, Ilpinsky Peninsula [Kovalenko, 1992]; 4 - Eocene, Kronotsky terrane [Pechersky et al., 1997]; 5 - Oligocene-Miocene, western Kamchatka [Kazansky et al., 2021].

Жүктеу (341KB)

© Russian academy of sciences, 2025