Seismotectonic Position of the Source of the July 13, 2023, Earthquake in the Eastern Laptev Sea Shelf from Surface Wave Data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In this study, we consider in detail the July 13, 2023, earthquake occurred of the shelf of the eastern Laptev Sea (Belkov–Svyatoi Nos rift). On the one hand, our interest in this event is due to the location of its epicenter, to the east of which there is a sharp decrease in seismic activity. Conversely, detailed Common Depth Point (CDP) data on the structure o the upper crust are available for its epicentral zone, making it possible to analyze the seismotectonic position of the earthquake source. Focal parameters in the instantaneous point source approximation are calculated from surface waves recorded at teleseismic distances. As a result, we have obtained a scalar seismic moment (M0 = 9.8*1016 N · m), corresponding moment magnitude (Mw = 5.3), source depth (h = 8 км), and focal mechanism (a normal fault along a gently dipping nodal plane with a NW–SE strike). Our results are compared with data from seismological agencies. It has been shown that differences between them are most likely caused by various initial data, including their different frequency ranges. Our estimates agree better with the available geological and geophysical information on the tectonics of the study area. Taking into account the data on strike, dip, and penetration depth of faults and our source parameter values, we have concluded that the July 13, 2023, earthquake could have been associated with a major listric normal fault on the western slope of the Belkov–Svyatoi Nos rift.

Texto integral

Acesso é fechado

Sobre autores

A. Filippova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: aleirk@mail.ru
Rússia, Moscow, Troitsk, 108840; Moscow, 117997

A. Fomochkina

Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences; Gubkin National University of Oil and Gas

Email: aleirk@mail.ru
Rússia, Moscow, 117997; Moscow, 119991

Bibliografia

  1. Аптекман Ж.Я., Татевосян Р.Э. О возможности выявления сложных очагов землетрясений по данным каталога СМТ (тензор центроида момента) // Физика Земли. 2007. № 5. С. 17–23.
  2. Букчин Б.Г. Об определении параметров очага землетрясения по записям поверхностных волн в случае неточного задания характеристик среды // Изв. АН СССР. Сер. Физика Земли. 1989. № 9. С. 34–41.
  3. Драчев С.С. Тектоника рифтовой системы дна моря Лаптевых // Геотектоника. 2000. № 6. С. 43–58.
  4. Имаева Л.П., Имаев В.С., Козьмин Б.М., Мельникова В.И., Середкина А.И., Маккей К.Д., Ашурков С.В., Смекалин О.П., Овсюченко А.Н., Чипизубов А.В., Сясько А.А. Сейсмотектоника северо-восточного сектора Российской Арктики. Новосибирск: изд-во СО РАН. 2017. 134 с.
  5. Левшин А.Л., Яновская Т.Б., Ландер А.В., Букчин Б.Г., Бармин М.П., Ратникова Л.И., Итс Е.Н. Поверхностные сейсмические волны в горизонтально-неоднородной Земле. М.: Наука. 1986. 278 с.
  6. Пискарев А.Л., Сорока И.В., Чернышев М.Ю. Строение земной коры и тектогенез в море Лаптевых // Геотектоника. 2003. № 5. С. 57–72.
  7. Середкина А.И., Гилева Н.А. Зависимость между моментной магнитудой и энергетическим классом для землетрясений Прибайкалья и Забайкалья // Сейсмические приборы. 2016. Т. 52. № 2. С. 29–38.
  8. Середкина А.И., Козьмин Б.М. Очаговые параметры Таймырского землетрясения 9 июня 1990 г. // Докл. РАН. 2017. Т. 473. № 2. С. 214–217. doi: 10.7868/S0869565217060202
  9. Федеральный исследовательский центр Единая геофизическая служба Российской академии наук, 2024. On-line каталог. Обнинск, Россия. Available from http://www.gsras.ru/new/catalog.Lastaccessed 15 February 2024.
  10. Филиппова А.И., Фомочкина А.С. Очаговые параметры сильных Турецких землетрясений 6 февраля 2023 г. (Mw = 7.8 и Mw = 7.7) по данным поверхностных волн // Физика Земли. 2023. № 6. С. 89–102. doi: 10.31857/S0002333723060078
  11. Фомочкина А.C., Филиппова А.И. очаговые параметры Улахан-Чистайского землетрясения 20 января 2013 г. (Якутия) по данным поверхностных волн // Вопросы инженерной сейсмологии. 2023. Т. 50. № 3. С. 17–29. https://doi.org/10.21455/VIS2023.3-2
  12. Шипилов Э.В., Лобковский Л.И., Шкарубо С.И., Кириллова Т.А. Геодинамические обстановки в зоне сопряжения хребта Ломоносова и Евразийского бассейна с континентальной окраиной Евразии // Геотектоника. 2021. № 5. С. 3–26. doi: 10.31857/S0016853X21050076
  13. Albuquerque Seismological Laboratory (ASL)/USGS. 1992. New China Digital Seismograph Network [Data set]. International Federation of Digital Seismograph Networks.https://doi.org/10.7914/SN/IC
  14. Albuquerque Seismological Laboratory/USGS. 2014. Global Seismograph Network (GSN – IRIS/USGS) [Data set]. International Federation of Digital Seismograph Networks.https://doi.org/10.7914/SN/IU
  15. Avetisov G.P. Geodynamics of the zone of continental continuation of Mid-Arctic earthquakes belt (Laptev Sea) // Physics of the Earth and Planetary Interiors. 1999. V. 114. № 1–2. P. 59–70. https://doi.org/10.1016/S0031-9201(99)00046-1
  16. Bird P. An updated digital model of plate boundaries // Geochem. Geophys. Geosyst. 2003. V. 4. № 3. 1027. doi: 10.1029/2001GC000252
  17. Drachev S.S., Shkarubo S.I. Tectonics of the Laptev Shelf, Siberian Arctic. In: Pease V., Coakley B. (Eds.) Circum-Arctic Lithosphere evolution. Geological Society, London, Special Publications, 2017. V. 460. P. 263–283. https://doi.org/10.1144/SP460.15
  18. Drachev S.S., Savostin L.A., Groshev V.G., Bruni I.E. Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic // Tectonophysics. 1998. V. 298. № 4. P. 357–393. https://doi.org/10.1016/S0040-1951(98)00159-0
  19. Dziewonski A.M., Anderson D.L. Preliminary Reference Earth Model // Phys. Earth Planet. Inter. 1981. V. 25. N 4. P. 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
  20. Dziewonski A.M., Chou T.-A., Woodhouse J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // Journal of Geophysical Research: Solid Earth. 1981. V. 86. P. 2825–2852. doi: 10.1029/JB086iB04p02825
  21. Ekström G, Nettles M., Dziewonski A.M. The Global CMT project 2004–2010: Centroid moment tensors for 13.017 earthquakes // Physics of the Earth and Planetary Interiors. 2012. V. 200–201. P. 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
  22. ETOPO 2022: 15 Arc-Second Global Relief Model, 2024.Available from https://www.ncei.noaa.gov/products/etopo-global-relief-model. Last accessed February 15, 2024. doi: 10.25921/fd45-gt74
  23. Filippova A.I., Melnikova V.I. Crustal stresses in the East Arctic region from new data on earthquake focal mechanisms // Tectonics. 2023. V. 42. e2022TC007338. https://doi.org/10.1029/2022TC007338
  24. Filippova A.I., Filippov S.V., Radziminovich Ya.B. Thermal state of the lithosphere beneath the Laptev Sea: Geodynamic implications from geomagnetic data // Journal of Asian Earth Sciences. 2024. V. 261. 105970. https://doi.org/10.1016/j.jseaes.2023.105970
  25. Franke D., Hinz K., Oncken O. The Laptev Sea rift // Marine and Petroleum Geology. 2001. V. 18. № 10. P. 1083–1127. https://doi.org/10.1016/S0264-8172(01)00041-1
  26. Gaina C., Roest W.R., Müller R.D. Late Cretaceous-Cenozoic deformation of northeast Asia // Earth and Planetary Science Letters. 2002. V. 197. № 3–4. P. 273–286. https://doi.org/10.1016/S0012-821X(02)00499-5
  27. GEOFON Moment Tensor Solutions, 2024.On-line Catalog. Helmholtz-Zentrum, Potsdam, Germany. Available from https://geofon.gfz-potsdam.de. Last accessed February 15, 2024.
  28. Geoscience Australia, 2024. On-line Catalog. Australia. Available from https://www.ga.gov.au and http://www.isc.ac.uk. Last accessed February 15, 2024.
  29. Global CMT Web Page, 2024. On-line Catalog. Lamont-Doherty Earth Observatory (LDEO) of Columbia University, Columbia, SC, USA. Available from http://www.globalcmt.org. Last accessed February 15, 2024.
  30. Gramberg I.S., Verba V.V., Verba M.L., Kos’ko M.K. Sedimentary cover thickness map – sedimentary basins in the Arctic // Polarforschung. 1999. V. 69. P. 243–249.
  31. Hanks T., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979.84. B5. P. 2348–2350. https://doi.org/10.1029/JB084iB05p02348
  32. Heidbach O., Rajabi M., Cui X., Fuchs K., Müller B., Reinecker J., Reiter K., Tingay M., Wenzel F., Xie F., Ziegler M.O., Zoback M.-L., Zoback M. The World Stress Map database release 2016: Crustal stress pattern across scales // Tectonophysics. 2018. V. 744. P. 484–498. https://doi.org/10.1016/j.tecto.2018.07.007
  33. Imaeva L., Gusev G., Imaev V., Mel’nikova V. Neotectonic activity and parameters of seismotectonic deformations of seismic belts in Northeast Asia // Journal of Asian Earth Sciences. 2017. V. 148. P. 254–364. http://dx.doi.org/10.1016/j.jseaes.2017.09.007
  34. International Seismological Centre, 2024. On-line Bulletin. Internatl.Seis.Cent., Thatcham, United Kingdom. Available from http://www.isc.ac.uk. Last accessed February 15, 2024.
  35. Kagan Y.Y. Simplified algorithms for calculating double-couple rotation // Geophys. J. Int. 2007. V. 171. № 1. P. 411–418. https://doi.org/10.1111/j.1365-246X.2007.03538.x
  36. Lasserre C., Bukchin B., Bernard P., Tapponier P., Gaudemer Y., Mostinsky A., Dailu R. Source parameters and tectonic origin of the 1996 June 1 Tianzhu (Mw = 5.2) and 1995 July 21 Yongen (Mw = 5.6) earthquakes near the Haiyuan fault (Gansu, China) // Geophys. J. Int. 2001. V. 144. № 1. P. 206–220. https://doi.org/10.1046/j.1365-246x.2001.00313.x
  37. Lebedev S., Schaeffer A.J., Fullea J., Pease V. Seismic tomography of the Arctic region: inferences for the thermal structure and evolution of the lithosphere. In: Pease, V., Coakley, B. (Eds.), Circum-Arctic Lithosphere evolution. Geological Society, London, Special Publications, 2017. V. 460. P. 419–440. https://doi.org/10.1144/SP460.10
  38. Mazur S., Campbell S., Green C., Bouatmani R. Extension across the Laptev Sea continental rifts constrained by gravity modeling // Tectonics. 2015. V. 34. № 3. P. 435–448. https://doi.org/10.1002/2014TC003590
  39. Nataf H.-C., Ricard Y. 3SMAC: on a priori tomographic model of the upper mantle based on geophysical modeling // Phys. Earth Planet. Inter. 1996. V. 95. № 1–2. P. 101–122. https://doi.org/10.1016/0031-9201(95)03105-7
  40. National Earthquake Information Center, 2024. On-line Catalog. US Geological Survey, USA Available from https://earthquake.usgs.gov. Last accessed February 15, 2024.
  41. Northern California Earthquake Data Center. 2014. Berkeley Digital Seismic Network (BDSN) [Data set]. Northern California Earthquake Data Center. https://doi.org/10.7932/BDSN
  42. Petrov O., Morozov A., Shokalsky S., Kashubin S., Artemieva I.M., Sobolev N., Petrov E., Ernst R.E., Sergeev S., Smelror M. Crustal structure and tectonic model of the Arctic Region // Earth-Science Reviews. 2016. V. 154. P. 29–71. https://doi.org/10.1016/j.earscirev.2015.11.013
  43. Scripps Institution of Oceanography. 1986. Global Seismograph Network – IRIS/IDA [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II
  44. Seredkina A.I., Melnikova V.I. New data on earthquake focal mechanisms in the Laptev Sea region of the Arctic-Asian seismic belt // Journal of Seismology. 2018. V. 22. № 5. P. 1211–1224. https://doi.org/10.1007/s10950-018-9762-9
  45. Sibson R.H. Roughness at the base of the seismogenic zone: contributing factors // Journal of Geophysical Research: Solid Earth. 1984. V. 89. № B7. P. 5791–5799. https://doi.org/10.1029/JB089iB07p05791
  46. Sloan R.A., Jackson J.A., McKenzie D, Priestley K. Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension // Geophysical Journal International. 2011. V. 185. № 1. P. 1–29. https://doi.org/10.1111/j.1365-246X.2010.04882.x
  47. Zelenin E.A, Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth System Science Data. 2022. V. 14. № 10. P. 4489–4503. https://doi.org/10.5194/essd-14-4489-2022

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Study region. Epicentres of earthquakes with M ≥ 4.0 (1960-2023) are given according to ISC catalogue [International..., 2024], the earthquake 13.07.2023 with Mw = 5.0 is marked in pink colour [Global..., 2024]. Active faults are marked with red curves according to [Zelenin et al., 2022], Khatangsko-Lomonosov fault zone - with bold dotted line according to [Shipilov et al., 2021]. Stress tensors for the Eurasian basin (Gakkel Ridge) and the shelf of the Laptev Sea are shown according to [Filippova and Melnikova, 2023]: Shmin and SHmah - minimum and maximum horizontal compression, respectively, SV - vertical stress. Letters in circles indicate rifts: A - Anisinsky, B - Belkovsko-Svyatonossky, L - Lyakhovsky, U - Ust-Lensky, F - Faddeevsky [Drachev, 2000; Imaeva et al., 2017]. Hereinafter, topography and bathymetry are shown according to the global model ETOPO 2022 [ETOPO..., 2024]. The thin dashed line highlights the area shown in Fig. 7а. The inset indicates the position of the study region in the Arctic, lithospheric plate boundaries are shown schematically according to [Bird, 2003]. Translated with www.DeepL.com/Translator (free version)

Baixar (1MB)
3. Fig. 2. Example of SWAN processing of the vertical component of the CMB station (azm = 66.09°, Δ = 6330 km): (a) and (b) - SWAN diagrams of the original and filtered signal, respectively (the dispersion curve of the group velocity is shown in white); (c) - the original record (blue curve) and the result of its filtering (red curve).

Baixar (499KB)
4. Fig. 3. Seismic stations at which surface wave spectra were obtained. The station codes correspond to the international standard. LHZ - vertical component of the record, LHT - transversal component of the record (the result of rotation of the horizontal components pointing east and north).

Baixar (795KB)
5. Fig. 4. Focal parameters of the earthquake 13.07.2023 in instantaneous point source approximation calculated from amplitude spectra of surface waves in different ranges of periods (T, c), and their corresponding values of normalised incoherence function ε. Hereinafter, the stereograms of the source mechanisms are given in the projection of the lower hemisphere. Parameters of nodal planes (NP) for focal mechanism No. 1 and T = 50-120 s: NP1 - strike azimuth = 306°, dip angle = 11°, slip angle = -153°; NP2 - strike = 190°, dip = 85°, slip = -80°.

Baixar (487KB)
6. Fig. 5. Focal parameters of the earthquake 13.07.2023 in accordance with data from seismological agencies. Focal mechanism is given for the best double-couple dipole characterising the full deviatoric tensor of seismic moment. Decoding of agency codes: GCMT - The Global CMT Project, Lamont Doherty Earth Observatory, Columbia University, USA (https://www.globalcmt.org); GFZ - German Research Centre for Geosciences, Helmholtz Centre Potsdam, Germany (https://www.gfz-potsdam.de); AUST - Geoscience Australia, Australia (http://www.ga.gov.au). The index f denotes a fixed depth value; DC is the percentage of the shear component (double-couple) in the deviatoric seismic moment tensor.

Baixar (194KB)
7. Fig. 6. Dependence of the partial function of the normalised incoherence ɛh on the source depth (h, km) for the period range 50-120 s.

Baixar (271KB)
8. Fig. 7. Position (a) and northeastern fragment of the interpreted LARGE 89010 DOM profile (b) according to [Drachev, 2000; Drachev et al., 1998] with simplifications. AA′ (blue line) - northeastern part of the LARGE 89010 profile, red lines - active faults according to [Zelenin et al., 2022]. Rift designations (letters in circles) see in the caption to Fig. 1. Panel (a) shows the solution of the focal mechanism of the earthquake 13.07.2023 in the projection of the lower hemisphere (No. 1 for T = 50-120 c in Fig. 4).

Baixar (370KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024