Evolution of microcracks in the rock deformation process: X-ray microtomography and discrete element method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In this study, we directly observed microcracks formed in a sample of rock under uniaxial compressive load. Detection of defects in the volume was carried out with the help of X-ray computed microtomography. The peculiarity of the experiments is that a tomographic image of the sample was taken directly under mechanical load. Based on the analysis of tomographic slices, the fractal dimension and relative volume of microcracks were calculated at three stages of loading. Three-dimensional models of the defect structure were constructed to illustrate the change in the morphology of the main crack. Numerical experiments on the fracture of samples of heterogeneous materials have been carried out using the discrete element model. The change in the fractal dimension of main cracks in the process of their growth was investigated. A good agreement between the results of computer simulations and laboratory experiments has been established, which indicates the adequacy of the proposed model and allows in further studies to use it to study the behavior of local parameters that cannot be measured experimentally.

Texto integral

Acesso é fechado

Sobre autores

Е. Damaskinskaya

Ioffe Institute

Autor responsável pela correspondência
Email: Kat.Dama@mail.ioffe.ru
Rússia, St. Petersburg

V. Gilyarov

Ioffe Institute

Email: Kat.Dama@mail.ioffe.ru
Rússia, St. Petersburg

Yu. Krivonosov

National Research Center “Kurchatov Institute”

Email: Kat.Dama@mail.ioffe.ru
Rússia, Moscow

A. Buzmakov

National Research Center “Kurchatov Institute”

Email: Kat.Dama@mail.ioffe.ru
Rússia, Moscow

V. Asadchikov

National Research Center “Kurchatov Institute”

Email: Kat.Dama@mail.ioffe.ru
Rússia, Moscow

D. Frolov

Ioffe Institute

Email: Kat.Dama@mail.ioffe.ru
Rússia, St. Petersburg

Bibliografia

  1. Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. Ижевск: НИЦ “Регулярная и хаотическая динамика”. 2001. 128 с.
  2. Гиляров В.Л., Дамаскинская Е.Е. Моделирование акустической эмиссии и разрушения поликристаллических гетерогенных материалов методом дискретных элементов // ФТТ. 2022. Т. 64. № 6. С. 676–683.
  3. Дамаскинская Е.Е., Гиляров В.Л. Особенности эволюции дефектной структуры в модели дискретных элементов // ФТТ. 2024. Т. 66. № 1. С. 142–148.
  4. Кривоносов Ю.С., Бузмаков А.В., Григорьев М.Ю., Русаков А.А., Дымшиц Ю.М., Асадчиков В.Е. Лабораторный конусно-лучевой рентгеновский микротомограф // Кристаллография. 2023. Т. 68. № 1. С. 160–165.
  5. Шустер Г. Маломерный хаос. М.: Мир. 1988. 240 с.
  6. Dosta M., Skorych V. MUSEN: An open-source framework for GPU-accelerated DEM simulations // SoftwareX. 2020. V. 12. P. 100618.
  7. Ester M., Kriegel H.-P., Sander J., Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96) / Evangelos Simoudis, Jiawei Han, Usama M. Fayyad (eds.). AAAI Press. 1996. P. 226.
  8. Feldkamp L.A., Davis L.C., Kress J.W. Practical Con-Beam Algorithm // Journal of the Optical Society of America A. 1984. V. 1. P. 612–619.
  9. Ghurcher P.L., French P.R., Shaw J.G., and Schramm L.L. Rock Properties of Berea Sandstone, Baker Dolomite, and Indiana Limestone. SPE International Symposium on Oil field Chemistry. 1991. SPE21044 P. 431–446.
  10. Grassberger P., Procaccia I. Characterization of Strange Attractors // Phys. Rev. Lett. 1983. V. 50. P. 346-348.
  11. Hamiel Y., Katz O., Lyakhovsky V., Reches Z., Fialko Yu. Stable and unstable damage evolution in rocks with implications to fracturing of granite // Geophys. J. Int. 2006. V. 167. P. 1005–1016.
  12. Hilarov V.L., Damaskinskaya E.E. Fractal features of fracture centers in heterogeneous materials revealed by discrete element method // Mater. Sci. Engin. Technol. 2023. V. 54. № 12. P. 1554–1559.
  13. Ingacheva A.S., Chukalina M.V. Polychromatic CT Data Improvement with One-Parameter Power Correction // Mathematical Problems in Engineering. 2019. Article ID 1405365.
  14. Ju Y., Zheng J.T., Epstein M., Sudak L., Wang J.B., Zhao X. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms // Comput. Methods Appl. Mech. Eng. 2014. V. 279. № 7. P. 212–226.
  15. Kuksenko V., Tomilin N., Damaskinskaya E., and Lockner D. A two-stage model of fracture of rocks // Pure Appl. Geophys. 1996. V. 146. № 2. P. 253–263.
  16. Liu P., Ju Y., Gao F., Ranjith P. G., Zhang Q. CT identification and fractal characterization of 3-D propagation and distribution of hydrofracturing cracks in low-permeability heterogeneous rocks // Journal of Geophysical Research: Solid Earth. 2018. V. 123. P. 2156–2173.
  17. Lockner D.A., Byerlee J.D., Kuksenko V., Ponomarev A., Sidorin A. Quasi-static fault growth and shear fracture energy in granite // Nature. 1991. V. 350. P. 39–42.
  18. Peng R.D., Yang Y.C., Ju Y., LingTao Mao, YongMing Yang. Computation of fractal dimension of rock pores based on gray CT images // Chinese Sci Bull. 2011.V. 56. P. 3346–3357.
  19. Petružálek M., Vilhelm J., Rudajev V., Lokajíček T., Svitek T. Determination of the anisotropy of elastic waves monitored by a sparse sensor network // Int. J. Rock Mech. Min. Sci. 2013. V. 60. P. 208–216.
  20. Potyondy D.O., Cundall P.A. A bonded-particle model for rock // Int. J. Rock Mech. Min. Sci. 2004. V. 41. P. 1329–1364.
  21. Re J.X. Computerized Tomography Examination of Damage Tests on Rocks under Triaxial Compression // Soil and Rock Behavior and Modeling. 2012. https://doi.org/10.1061/40862(194)34
  22. Sheng-Qi Yang, P.G. Ranjith, Yi-Lin Gui. Experimental Study of Mechanical Behavior and X-Ray Micro CT Observations of Sandstone Under Conventional Triaxial Compression // Geotech. Test. J. 2015. V. 38. № 2. P. 179–197.
  23. Smirnov V.B., Ponomarev A.V., Benard P., Patonin A.V. Regularities in transient modes in the seismic process according to the laboratory and natural modeling // Izv. Phys. Solid Earth. 2010. V. 46. P. 104–135.
  24. Tal Y., Goebel T., J-P Avouac Experimental and modeling study of the effect of fault roughness on dynamic frictional sliding // Earth and Planetary Science Letters. 2020. V. 536. P. 116133.
  25. Xie H.P. Fractals in Rock Mechanics. CRC PRESS, Boca Raton. 1993. — 464 p.
  26. Xinglin Lei, Shengli Ma Laboratory acoustic emission study for earthquake generation Process // Earthq Sci. 2014. V. 27. № 6. P. 627–646.
  27. Yongming Yang, Yang Ju, Fengxia Li, Feng Gao, Huafei Sun. The fractal characteristics and energy mechanism of crack propagation in tight reservoir sandstone subjected to triaxial stresses // Journal of Natural Gas Science and Engineering. 2016. V. 32. P. 415e422.
  28. Yujun Zuo, Zhibin Hao, Hao Liu, Chao Pan, Jianyun Lin, Zehua Zhu, Wenjibin Sun, Ziqi Liu. Mesoscopic damage evolution characteristics of sandstone with original defects based on micro-ct image and fractal theory //Arabian Journal of Geosciences. 2022. V. 15. P. 1673.
  29. Zabler S., Rack A., Manke I., Thermann K., Tiedemann J., Harthill N., Riesemeier H. High-resolution tomography of cracks, voids and micro-structure in greywacke and limestone // Journal of Structural Geology. 2008. V. 30. P. 876–887.
  30. Zhou X.P., Zhang Y.X., Ha Q.L. Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading // Theoretical and Applied Fracture Mechanics. 2008. V. 50. P. 49–56.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental setup. X-ray optical part of the X-ray microtomograph “MICROTOM”: 1 — source, 2 — loading cell with sample, 3 — detector.

Baixar (268KB)
3. Fig. 2. Distribution of X-ray optical density in the sections of the sample located in the upper, central and lower parts after the first (a), second (b) and third (c) stages of loading.

Baixar (218KB)
4. Fig. 3. Three-dimensional visualization of the microcrack system after three loading stages. Dark gray objects of complex geometric shape inside the sample are the crack that has formed.

Baixar (92KB)
5. Fig. 4. Values ​​of the fractal dimension of the crack system in different parts of the sample after the 1st (black line), 2nd (blue line) and 3rd (red line) loading stages.

Baixar (70KB)
6. Fig. 5. Values ​​of the relative volume of the crack system in different parts of the specimen after the 1st (black line), 2nd (blue line) and 3rd (red line) loading stages.

Baixar (79KB)
7. Fig. 6. Change in voltage on the sample in the computer experiment. The abscissa axis is the normalized time of the experiment. (Tfailure is the moment of time at which the sample was divided into parts).

Baixar (57KB)
8. Fig. 7. Change in the fractal dimension of the main crack in a computer experiment.

Baixar (54KB)

Declaração de direitos autorais © Russian academy of sciences, 2025