Проблемы глобальной геодинамики

Обложка
  • Авторы: Трубицын В.П.1,2
  • Учреждения:
    1. Федеральное государственное бюджетное учреждение науки Институт физики Земли имени О.Ю. Шмидта Российской академии наук
    2. Федеральное государственное бюджетное учреждение науки Институт теории прогноза землетрясений и математической геофизики Российской академии наук
  • Выпуск: № 1 (2019)
  • Страницы: 180-198
  • Раздел: Статьи
  • URL: https://journals.eco-vector.com/0002-3337/article/view/11474
  • DOI: https://doi.org/10.31857/S0002-333720191180-198
  • ID: 11474

Цитировать

Полный текст

Аннотация

Глобальная геодинамика определяется тепловой конвекцией в мантии, которая проявляется на поверхности в движениях, рельефе, тепловом потоке и вулканизме. На Земле тепловая конвекция осложнена тем, что вся литосфера раздроблена на жесткие плиты, земная кора разбита на шесть отдельных плавающих континентов и ряд островов, на дне мантии имеются два гигантских скопления тяжелого вещества, при высокой интенсивности восходящие конвективные потоки приобретают форму плюмов, в мантии происходят фазовые превращения вещества. Влияние многих факторов на структуру мантийных течений в основном изучено. Актуальным является согласование новых данных о фазовых переходах на глубинах 650 км–700 км с сейсмическими данными о положении этих границ. До настоящего времени не решена конечная проблема глобальной геодинамики, даже полусхематично не известна трехмерная структура течений во всей мантии, которая в целом согласовалась бы с имеющимся в настоящее время комплексом данных наблюдений геофизики, геохимии, геологии и численного моделирования.

Об авторах

В. П. Трубицын

Федеральное государственное бюджетное учреждение науки Институт физики Земли имени О.Ю. Шмидта Российской академии наук; Федеральное государственное бюджетное учреждение науки Институт теории прогноза землетрясений и математической геофизики Российской академии наук

Автор, ответственный за переписку.
Email: trub@ifz.ru
Россия, 123242, г. Москва, Б.Грузинская ул., д. 10, стр. 1; 117997, г. Москва, ул. Профсоюзная, 84/32

Список литературы

  1. Добрецов Н.Л. Глобальная геодинамическая эволюция Земли и глобальные геодинамические модели // Геология и геофизика. 2010. Т. 51. № 6. С. 761–784.
  2. Евсеев М.Н., Трубицын В.П. Модель общемантийной конвекции с образованием долгоживущего изолированного резервуара, питающего срединно-океанический хребет // Докл. РАН. 2017б. Т. 476. № 2. С. 205–208.
  3. Евсеев М.Н., Трубицын В.П. Пульсации и разрывы ножек тепловых мантийных плюмов // Докл. РАН. 2017а. Т. 476. № 5. С. 559–561.
  4. Котелкин В.Д., Лобковский Л.И. Общая теория эволюции планет и современная термохимическая модель эволюции Земли // Физика Земли. 2007. № 1. С. 26–44.
  5. Лобковский Л.И., Котелкин В.Д. Геодинамика мантийных плюмов, их взаимодействие с астеносферой и литосферой и поверхностные проявления в рифто и траппо образовании. Общие вопросы тектоники. Тектоника России. М. 2000. С. 304–307.
  6. Трубицын В. П., Трубицын А.П. Численная модель образования совокупности литосферных плит и их прохождения через границу 660км // Физика Земли. 2014. № 6. С. 138–146.
  7. Трубицын В.П. Основы тектоники плавающих континентов // Физика Земли. 2000. № 9. С. 3–40.
  8. Трубицын В.П. Природа границы между верхней и нижней мантией и ее влияние на конвекцию // Физика Земли. 2010. № 6. С. 3–18. doi: 10.1134/S1069351310060017
  9. Трубицын В.П. Реология мантии и тектоника океанических литосферных плит // Физика Земли. 2012. № 6. С. 3–22.
  10. Трубицын В.П. Рыков В.В. Численные модели эволюции мантийной конвекции. Глобальные изменения природной среды-2002 / Ред. Добрецов Н.Л. Новосибирск: Наука. 2002. Т. 3. Гл. 2. С. 42–56.
  11. Трубицын В.П. Сейсмическая томография и дрейф континентов // Физика Земли. 2008. № 11. С. 3–19.
  12. Трубицын В.П. Тектоника плавающих континентов // Вестник РАН. 2005. № 1. С. 10–21.
  13. Трубицын В.П. Термохимическая конвекция в мантии с рециркуляцией океанической коры // Физика Земли. 2010а. № 11. C. 14–22. doi: 10.1134/S1069351310110029
  14. Трубицын В.П., Евсеев А.Н, Баранов А.А., Трубицын А.П. Влияние эндотермического фазового перехода на массообмен между верхней и нижней мантией // Физика Земли. 2008. № 6. С. 3–16.
  15. Albarede F., van der Hils, R.D. Zoned mantle convection // Philos. Trans. R. Soc. London. 2002. V. A360. P. 2569–2592.
  16. Ballmer M.D., Ito G., vanHunen J., Ito G., Bianco T.A., Tackley P.J. Intraplate volcanism with complex age-distance patterns: A case for small-scale sublithospheric convection // Geochem. Geophys. Geosyst. 2009. V. 10. № 6. P. 1–22. doi: 10.1029/2009GC002386
  17. Bercovici D. Mantle Dynamics Past, Present, and Future: An Introduction and Overview. In Treatise on Geophysics / Eds. Bercovici D., Schubert G. Elsevier. 2007. V. 7. P. 1–30.
  18. Bercovici D. The generation of plate tectonics from mantle convection // Earth and Planetary Science Letters. 2003. V. 205. P. 107–121.
  19. Christensen U., Yuen D.A. The interaction of a subducting lithospheric slab with a chemical or phase boundary // J. Geophys. Res. 1984. V. 89. P. 4389–4402.
  20. Christensen U., Yuen D.A. Layered convection induced by phase transitions // J. Geophys. Res. 1985. V. 90. P. 10291–10300. doi: 10.1029/JB090iB12p10291
  21. Dannberg J., Sobolev St.V. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept // Nature Communications. 2015. doi: 10.1038/ncomms7960
  22. Fei Y., Van Orman J., Li J., van Westrenen W., Sanloup C., Minarik W., Hirose K., Komabayashi T., Walter M., Funakoshi K. Eperimentally determined postspinel transformatio boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications // J. Geophys. Res. 2004. B02305. doi: 10.1029/2003JB002562
  23. Fukao Y., Nakakuki T., Kameyama M., Yanagisawa T. et al. Numerical Simulation of the Mantle Convection. Annual Report of the Earth Simulator Center. Institute for Research on Earth Evolution. Japan Agency for Marine-Earth Science and Technology. 2003.
  24. Gurnis M. Large-scale mantle convection and aggregation and dispersal of supercontinents // Nature. 1988. V. 332 (6166). P. 696–699. https://doi.org/10.1038/332695a0
  25. Hager B.H., O’Connel, R.J. A simple global model of plate dynamics and mantle convection // J. Geophys. Res. 1981. V. 86. P. 4843–4867.
  26. Hirose K. Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle // Journal Geophys. Res. 2002. V. 107. P. 2078–2089 doi: 10.1029/2001JB000597
  27. Ishii T., Kojitani H., Akaogi M. Phase relations and mineral chemistry in pyrolytic mantle at 1600–2200 °C under pressures up to the uppermost lower mantle: Phase transitions around the 660-km discontinuity and dynamics of upwelling hot plumes // Physics of the Earth and Planetary Interiors. 2017. doi: https://doi.org/10.1016/j.pepi.2017.10.005
  28. Ito G., Keken P.E. Hot Spots and Melting Anomalies. Treatise on Geophysics / Eds. Bercovici D., Schubert G. Elsevier. 2007. V. 7. P. 1–30.
  29. Karason H., van der Hilst R.D. Constraints on mantle convection from seismic tomography, in The History and Dynamics of Global Plate Motion / Eds. Richards M.R., Gordon R., van der Hilst R.D. Washington: American Geophysical Union. 2000. V. 121. P. 277–288.
  30. Kojitani H., Inoue T., Akaogi M. Precise measurements of enthalpy of postspinel transition in Mg2SiO4 and application to the phase boundary calculation // J. Geophys. Res. Solid Earth. 2016. V. 121. P. 729–742. doi: 10.1002/2015JB012211
  31. Li C., van der Hilst R.D., Engdahl E.R., Burdick S. A new global model for P wave speed variations in Earth’s mantle // Geochem. Geophys. Geosyst. 2008. V. 9. Q05018. doi: 10.1029/2007GC001806
  32. Lobkovsky L.I., Kotelkin V.D. Numerical analysis of geo¬dynamic evolution of the Earth based on a thermochemical model of the mantle convection // Russian Journal of Earth Sciences. 2004. V.6 (1). P. 49–58.
  33. Machetel P., Weber P. Intermittent layered convection in a model mantle with an endothermic phase change at 670 km // Nature. 1991. V. 350. P. 55–57.
  34. Ohtani E., Litasov K.D. The Effect of Water on Mantle Phase Transitions // Reviews in Mineralogy & Geochemistry. 2006. V. 62. P. 397–420.
  35. Ricard Y. Physics of Mantle Convection. In Treatise on Geophysics / Eds Bercovici D., Schubert G. Elsevier. 2007. V. 7. P. 437–505.
  36. Ritsema J., Deuss A., van Heijst H.J., Woodhouse J.H. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements // Geophys. J. Int. 2011. V. 184(3). P. 1223–1236.
  37. Schubert G., Turcotte D.L., Olson P. Mantle convection in the Earth and Planets. Cambridge: University Press. 2004. P. 940.
  38. Sobolev A.V., Hofmann A.W., Nikogosian I.K. Recycled oceanic crust observed in `ghost plagioclase’ within the source of Mauna Loa lavas // Nature. 2000. V. 404. P. 986–989.
  39. Tackley P. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. Part 2: strain weakening and asthenosphere. G3. 2000. doi: 10.1029/2000GC000,43
  40. Tackley P.J. Mantle Geochemical Geodynamics. In Trea¬tise on Geophysics / Eds Bercovici D., Schubert G. 2007. Elsevier. V. 7. P. 1–30.
  41. Tackley P.J. Self-consistent generation of tectonic plates in time_dependent, three_dimensional mantle convection simulations. 2. Strain weakening and asthenosphere // Geochem. Geophys. Geosystem. 2000. V. 1. 1026. doi: 10.1029/2000GC000043
  42. Tackley P.J., Stevenson D.J., Glatzmaier G.A., Schubert G. Effects of multiple phase transitions in a three-dimensional sphericalm odel of convectioni n Earth’s mantle // J. Geophys Res. 1994. V. 99. P. 15877–15901.
  43. Tauzin B., Ricard Y. Seismically deduced thermodynamics phase diagrams for the mantle transition zone // Earth and Planetary Science Letters. 2014. V. 401. P. 337–346.
  44. Tolstikhin I., Hofmann A.W. Early crust on top of the Earth’s core // Physics of the Earth and Planetary Interiors. 2005. V. 148. P. 109–130.
  45. Trønnes R.G. Structure, mineralogy and dynamics of the lowermost mantle // Miner. Petrol. 2010. V. 99. P. 243–261. doi: 10.1007/s00710–009–0068-z
  46. Trubitsyn V. P., Evseev M.N. Pulsation of mantle plumes // Russian Journal of Earth Science. 2016. V. 16. ES3005. doi: 10.2205/2016ES000569
  47. Yoshida M. Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: a three dimensional numerical study // Tectonophysics. 2012. V. 532/535. P. 156–166.
  48. Yoshida M. Preliminary three_dimensional model of mantle convection with deformable, mobile continental lithosphere // Earth Planet. Sci. Lett. 2010. V. 295. P. 205–218.
  49. Yoshida M., Santosh M. Supercontinents, mantle dynamics and plate tectonics: a perspective based on conceptual vs. numerical models // Earth Science Reviews. 2011. V. 105. P. 1–24.
  50. Zhong S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature // J. Geophys. Res. 2006. V. 111. B04409. doi: 10.1029/2005JB003972

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2019

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах