Природа анизотропного отклика флюидонасыщенной среды на прохождение поверхностных сейсмических волн

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Мониторинг изменения порового давления или уровня воды в наблюдательных скважинах показывает значительные колебания как при прохождении Р-волн и волн Релея, так и при прохождении S-волн и волн Лява. Недавние измерения в скважине показали азимутальную зависимость колебаний порового давления относительно ориентации напряжений и направления простирания разломной зоны. В зоне активной разломной зоны анизотропия, индуцированная трещиноватостью, соответствует преимущественной ориентации микротрещин и других дефектов сплошности среды. Настоящая работа посвящена разработке модифицированного уравнения Скемптона для количественного описания изменений порового давления в коллекторе, вызванных прохождением поверхностных волн и связанных с ориентацией и главными значениями тензора напряжений и поврежденности (трещиноватости) пород. Разработанные соотношения позволяют описать азимутальную зависимость отклика порового давления с помощью безразмерного параметра, определяемого как отношение амплитуд колебаний давлений, вызванных сдвиговой компонентой и объемной деформацией. Согласно предложенной теоретической модели, максимальный пороупругий отклик коллектора на прохождение сейсмической волны проявляется в случае субпараллельности направлений преимущественной трещиноватости пород и максимального горизонтального напряжения.

Для верификации предложенной теоретической модели использованы данные мониторинга порового давления в резервуаре, используемом под захоронение сточных вод Арбакл (Оклахома, США). Показано, что наблюдаемое разнообразие отклика порового давления в скважинах, расположенных в окрестностях разломной зоны, пересекающей резервуар, на прохождение сейсмических волн от разноудаленных сейсмических событий с высокой точностью описывается разработанной моделью.

Полный текст

Доступ закрыт

Об авторах

И. А. Пантелеев

Институт механики сплошных сред УрО РАН, ПФИЦ УрО РАН

Автор, ответственный за переписку.
Email: pia@icmm.ru
Россия, Пермь

Д. В. Ложкин

Институт механики сплошных сред УрО РАН, ПФИЦ УрО РАН

Email: lozhkin.d@icmm.ru
Россия, Пермь

В. Ляховский

Геологическая служба Израиля

Email: vladimir.lyakhovsky@gmail.com
Израиль, Иерусалим

Э. Шалев

Геологическая служба Израиля

Email: eyal2shalev@gmail.com
Израиль, Иерусалим

Список литературы

  1. Барабанов В.Л., Гриневский А.О., Калачев А.А., Савин И.В. Частотная характеристика системы скважина — водоносный горизонт по данным наблюдений за уровнем подземных вод // Изв. АН СССР. Сер. Физика Земли. 1988. № 3. С. 41–50.
  2. Вартанян Г.С. Геодинамический мониторинг и прогноз сильных землетрясений // Отечественная геология. 2002. № 2. С. 62–65.
  3. Вартанян Г.С. Глобальная эндодренажная система: некоторые флюидофизические механизмы геодинамических процессов // Геодинамика и тектонофизика. 2019. Т. 10. № 1. С. 53–78.
  4. Виноградов С.Д., Троицкий П.А., Соловьева М.С. Влияние трещиноватости и напряжений в среде на параметры распространяющихся упругих волн // Изв. АН СССР. Сер. Физика Земли. 1989. № 4. С. 42–56.
  5. Виноградов С.Д., Троицкий П.А., Соловьева М.C. Изучение распространения упругих волн в среде с ориентированной трещиноватостью // Физика Земли. 1992. № 5. С. 14–34.
  6. Волейшо В.О., Куликов Г.В., Круподерова О.Е. Геодинамический режим Камчатско-Курильского и Сахалинского сейсмоактивного региона по данным ГГД-мониторинга // Разведка и охрана недр. 2007. № 5. С. 20–24.
  7. Горбунова Э.М., Беседина А.Н., Виноградов Е.А., Свинцов И.С. Реакция подземных вод на прохождение сейсмических волн от землетрясений на примере ГФО “Михнево” // Динамические процессы в геосферах. Вып. 7. М.: ГЕОС. 2015. С. 60–67.
  8. Егоркин А.В., Егоркин А.А. Анизотропия скоростей поперечных волн в консолидированной коре Сибири // Изв. АН СССР. Сер. Физика Земли. 1986. № 11. С. 106–112.
  9. Киссин И.Г. Флюиды в земной коре. Геофизические и тектонические аспекты. М.: Наука. 2015. 328 с.
  10. Копылова Г.Н., Болдина С.В. Гидрогеосейсмические вариации уровня воды в скважинах Камчатки. Петропавловск-Камчатский: ООО “Камчатпресс”. 2019. 144 с.
  11. Копылова Г.Н., Болдина С.В. Эффекты сейсмических волн в изменениях уровня воды в скважине: экспериментальные данные и модели // Физика Земли. 2020. № 4. С. 102–122.
  12. Копылова Г.Н., Болдина С.В. Гидрогеологические предвестники землетрясений и вулканических активизаций по данным наблюдений в скважинах полуострова Камчатка // Науки о Земле и недропользование. Гидрогеология и инженерная геология. 2021. Т. 44. № 2. С. 141–150.
  13. Пантелеев И.А., Ляховский В.А. Ориентация трещиноватости в хрупком твердом теле при традиционном трехосном сжатии // Изв. РАН. Механика твердого тела. 2022. № 5. С. 70–92.
  14. Пантелеев И.А., Ляховский В., Мубассарова В.А., Карев В.И., Шевцов Н.И., Шалев Э. Тензорная компакция пористых пород: теория и экспериментальная верификация // Записки Горного института. 2022. Т. 254. С. 234–243.
  15. Alt R.C., Zoback M.D. In situ stress and active faulting in Oklahoma // Bull. seism. Soc. Am. 2017. V. 107. P. 216–228.
  16. Barbour A.J., Beeler N.M. Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir // Earth Planetary Physics. 2021. V. 5. № 6. P. 547–558.
  17. Biot M.A. General theory of three-dimensional consolidation // Journal of Applied Physics. 1941. V. 12. № 2. P. 155–164.
  18. Bonner B.P. Shear wave birefringence in dilating granite // Geophysical Research Letters. 1974. V. 1. № 5. P. 217–220.
  19. Browning J., Meredith P.G., Stuart C., Harland S., Healy D., Mitchell T.M. A directional crack damage memory effect in sandstone under true triaxial loading // Geophysical Research Letters. 2018. V. 45. № 14. P. 6878–6886.
  20. Burbey T.J. Fracture characterization using Earth tide analysis // Journal of Hydrology. 2010. V. 380. P. 237–246.
  21. Chesnokov E.M., Zatsepin S.V. Effects of applied stress on effective elastic anisotropy in cracked solids // Geophys. J. Int. 1991. V. 107. P. 563–569.
  22. Crampin S. Geological and industrial implications of extensive-dilatancy anisotropy // Nature. 1987. V. 328. № 6130. P. 491–496.
  23. Crampin S. Suggestions for a consistent terminology for seismic anisotropy // Geophys. Prospect. 1989. V. 37. № 7. P. 753–770.
  24. Cutillo P.A., Bredehoeft J.D. Estimating Aquifer Properties from the Water Level Response to Earth Tides // Ground Water. 2011. V. 49. № 4. P. 600–610.
  25. Doan M.L., Brodsky E.E., Priour R., Signer C. Tydal analysis of borehole pressure — A tutorial. H.: Schlumberger Research report. 2006. 62 р.
  26. Hamiel Y., Lyakhovsky V., Agnon A. Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks // Geophys. J. Int. 2004. V. 156. P. 701–713.
  27. Hamiel Y., Lyakhovsky V., Agnon A. Rock dilation, nonlinear deformation, and pore pressure change under shear // Earth Planet. Sci. Lett. 2005. V. 237. P. 577–589.
  28. Henkel D.J. The shear strength of saturated remoulded clay: Proc. Res. Conf. Shear Strength Cohesive Soils Boulder, Color. 1960. Р. 533–540.
  29. Henkel D.J., Wade N.H. Plane strain tests on a saturated remoded clay // J. Soil Mech. Found. Div. 1966. V. 92. № 6. P. 67–80.
  30. Hsieh P., Bredehoeft J., Farr J. Determination of aquifer transmissivity from earth tide analysis // Water Resources Res. 1987. V. 23. P. 1824–1832.
  31. Kitagawa Y., Itaba S., Matsumoto N., Koizumi N. Frequency characteristics of the response of water pressure in a closed well to volumetric strain in the high frequency domain // J. Geophys. Res. 2011. V. 116. № B08301. Р. 1–12.
  32. Kolawole F., Johnston C.S., Morgan C.B., Chang J.C., Marfurt K.J., Lockner D.A., Reches Z., Carpenter B.M. The susceptibility of Oklahoma’s basement to seismic reactivation // Nat. Geosci. 2019. V. 12. P. 839–844.
  33. Kopylova G., Boldina S. Preseismic groundwater ion content variations: observational data in flowing wells of the Kamchatka peninsula and conceptual model // Minerals. 2021. V. 11. № 7. P. 731.
  34. Lai G., Ge H., Wang W. Transfer functions of the well-aquifer systems response to atmospheric loading and Earth tide from low to high-frequency band // J. Geophys. Res. Solid Earth. 2013. V. 118. Р. 1904–1924.
  35. Leary P.C., Crampin S., McEvilly T.V. Seismic fracture anisotropy in the Earth’s crust: An overview // J. geophys. Res. 1990. V. 95. P. 11105–11114.
  36. Lockner D.A., Byerlee J.D., Kuksenko V., Ponomarev A., Sidorin A. Chapter 1 observations of quasistatic fault growth from acoustic emissions // Int. Geophys. 1992. V. 51. P. 3–31.
  37. Lockner D.A., Byerlee J.D. Dilatancy in hydraulically isolated faults and the suppression of instability // Geophys. Res. Lett. 1994. V. 21. P. 2353–2356.
  38. Lockner D.A., Stanchits S.A. Undrained poroelastic response of sandstones to deviatoric stress change // J. geophys. Res. 2002. V. 107. P. 2353.
  39. Lockner D.A., Walsh J.B., Byerlee J.D. Changes in seismic velocity and attenuation during deformation of granite // J. geophys. Res. 1977. V. 82. P. 5374–5378.
  40. Lutzky H., Lyakhovsky V., Kurzon I., Shalev E. Hydrological response to the Sea of Galilee 2018 seismic swarm // J. Hydrol. 2020. V. 582. P. 124499.
  41. Lyakhovsky V., Panteleev I., Shalev E., Browning J., Mitchell T.M., Healy D., Meredith P.G. A new anisotropic poroelasticity model to describe damage accumulation during cyclic triaxial loading of rock // Geophys. J. Int. 2022a. V. 230. P. 179–201.
  42. Lyakhovsky V., Shalev E., Panteleev I., Mubassarova V. Compaction, strain, and stress anisotropy in porous rocks // Geomech. Geophys. Geo-Energy Geo-Resources. 2022b. V. 8. P. 1–17.
  43. Miller V., Savage M. Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu // Science. 2001. V. 293. P. 2231–2233.
  44. Nur A. Effects of stress on velocity anisotropy in rocks with cracks // J. geophys. Res. 1971. V. 76. P. 2022–2034.
  45. Nur A., Simmons G. Stress-induced velocity anisotropy in rock: an experimental study // J. geophys. Res. 1969. V. 74. P. 6667–6674.
  46. Paterson M.S., Wong T.F. Experimental Rock Deformation: The Brittle Field. B. : Springer. 2005. 348 p.
  47. Peng Z., Ben-Zion Y. Systematic analysis of crustal anisotropy along the Karadere–Düzce branch of the North Anatolian fault // Geophys. J. Int. 2004. V. 159. P. 253–274.
  48. Rahi K.A., Halihan T. Identifying aquifer type in fractured rock aquifers using harmonic analysis // Ground water. 2013. V. 51. № 1. P. 76–82.
  49. Reches Z., Lockner D. Nucleation and growth of faults in brittle rocks // J. Geophys. Res. Solid Earth. 1994. V. 99. № B9. P. 18159–18173.
  50. Renard F., McBeck J., Kandula N., Cordonnier B., Meakin P., Ben-Zion Y. Volumetric and shear processes in crystalline rock approaching faulting // Proc. Natl. Acad. Sci. 2019. V. 116. P. 16234–16239.
  51. Sayers C.M. Stress-dependent elastic anisotropy of sandstones // Geophys. Prospect. 2002. V. 50. P. 85–95.
  52. Schmitt D.R., Zoback M.D. Diminished pore pressure in low-porosity crystalline rock under tensional failure: apparent strengthening by dilatancy // J. geophys. Res. 1992. V. 97. P. 273–288.
  53. Shalev E., Kurzon I., Doan M.-L., Lyakhovsky V. Sustained water level changes caused by damage and compaction in- duced by teleseismic earthquakes // J. geophys. Res. 2016a. V. 121. P. 4943–4954.
  54. Shalev E., Kurzon I., Doan M.-L., Lyakhovsky V. Water-level oscillations caused by volumetric and deviatoric dynamic strains // Geophys. J. Int. 2016b. V. 204. P. 841–851.
  55. Skempton A.W. The pore-pressure coefficients A and B // Geotechnique. 1954. V. 4. P. 143–147.
  56. Stanchits S., Vinciguerra S., Dresen G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite // Pure appl. Geophys. 2006. V. 163. P. 975–994.
  57. Wang C.-Y., Chia Y., Wang P., Dreger D. Role of S waves and Love waves in coseismic permeability enhancement // Geophys. Res. Lett. 2009. V. 36. № 9.
  58. Wang C.-Y., Manga M. Earthquakes and Water. B.: Springer-Verlag. 2010. 228 p.
  59. Wang H.F. Effects of deviatoric stress on undrained pore pressure response to fault slip // J. geophys. Res. 1997. V. 102. P. 17943–17950.
  60. Wang H.F. Theory of linear poroelasticity with applications to geomechanics and hydro geology. P.: Princeton University Press. 2000. 304 p.
  61. Winterstein D.F. Velocity anisotropy terminology for geophysicists // Geophysics. 1990. V. 55. P. 1070–1088.
  62. Xue L., Brodsky E.E., Erskine J., Fulton P.M., Carter R. A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault // Geochemistry, Geophysics, Geosystems. 2016. V. 17 P. 858–871.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Ориентация зоны сдвига и два варианта ориентации трещиноватости: А – изотропная трещиноватость (равновероятно ориентированная); В – трещиноватость, ориентированная параллельно оси максимального горизонтального сжатия.

Скачать (152KB)
3. Рис. 2. Зависимость отношения от угла прихода волны для случая изотропной поврежденности (а), углы максимального по модулю ( и нулевого ( ) отклика порового давления на прохождение поверхностной волны (б).

Скачать (168KB)
4. Рис. 3. Зависимость отношения от угла прихода волны для случая трещиноватости, ориентированной параллельно оси максимального горизонтального напряжения, случай B (а), углы максимального по модулю ( и нулевого ( ) отклика порового давления на прохождение поверхностной волны (б).

Скачать (172KB)
5. Рис. 4. Интервалы возможной ориентации разломов, ориентации оси максимального горизонтального напряжения и положение сейсмических событий относительно наблюдательной скважины в районе резервуара Арбакл [Barbour, Beeler, 2021].

Скачать (164KB)
6. Рис. 5. Сравнение расчетной кривой (соотношение (25)) и сейсмологических данных для отклика порового давления ( ), индуцированного преимущественно ориентированной трещиноватостью пород.

Скачать (132KB)

© Российская академия наук, 2025