Transformation of aeolian relief forms under wind influence

Cover Page


The interaction of the air flow with the surface consisting of sandy disjoint particles is considered. Taking into account their mobility on the surface in the calculations allows us to describe the reasons for increasing the stability of the layer of particles bordering the air environment. The value of the threshold wind speed required for the removal of the particle increases due to the change in the pressure difference above and below the particle relative to the same value at a stationary state. The number of surface particles to be torn off when the wind reaches the threshold values increases. This circumstance allows to explain one of the possible reasons for the appearance of the known effective change of gravity acting on the layer, with the growth of eolian forms of relief. For inclined surfaces, the balance for the flows of falling and torn off by the wind particles is disturbed due to the difference in resistance to the effects of air flow. The differentiation of the eolian form of relief on the area with different intensities of wind removal makes it possible to estimate the relative increase in mass, which determines the optimal distance between the two structures for sustainable growth.

About the authors

E. A. Malinovskaya

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences; North-Caucasian Federal University, Institute of Mathematics and Natural Sciences Department of socio-economic geography, geoinformatics and tourism

Author for correspondence.

Russian Federation, 3, Pizevsky, Moscow, 119017; Pushkina ul., 1, Stavropol, 1355009


  1. Greeley R., Iversen D.J. Wind as geological process of Earth, Mars and Titan. New York: Cambridge University press, 1985. 333 p.
  2. Ivanov V.K., Matveev A.Ya., Tsymbal V.N., Yatse vich S.Ye. Radar investigations of the aeolian sand and dust transporting manifestations in desert areas // Telecommun. Radio Eng. 2015. V. 74. № 14. Р. 1269–1283.
  3. Почвозащитное земледелие. Под общ. ред. А.И. Бараева. М.: "Колос", 1975. 304 с.
  4. Семенов О.Е. Сопротивление подвижной песчаной поверхности при бурях // Гидрометеорология и экология. 2002. № 1. С. 14–27.
  5. Горчаков Г.И., Карпов А.В., Копейкин В.М., Злобин И.А., Бунтов Д.В., Соколов А.В. Экспериментальное и теоретическое исследование траекторий сальтирующих песчинок на опустыненных территориях // Оптика атмосферы и океана. 2012. Т. 25. № 6. С. 501–506.
  6. Гендугов В.М., Глазунов Г.П. Ветровая эрозия почвы и запыление воздуха. М.: Физматлит, 2007. 238 с.
  7. Семенов О.Е. Экспериментальные исследования кинематики и динамики пыльных бурь и поземков // Труды КазНИГМИ. 1972. № 49. С. 2–31.
  8. Zgheib N., Fedele J.J., Hoyal D.C. J.D., Perillo M.M., Balachandar S. Direct numerical simulation of transverse ripples: 1. Pattern initiation and bedform interactions. // J. Geophys. Res.: Earth Surface. 2018. V. 123. № 3. P. 448–477.
  9. Finn J.R., Li M., Apte S.V. Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer // J. Fluid Mech. 2016. V. 796. P. 340–385.
  10. Restrepo J.M., Moulton D. Precessive sand ripples in intense steady shear flows // Phys. Rev. E. 2011. V. 83. № 3. P. 031305.
  11. Michael R. Raupach, Hua Lu. Representation of land-surface processes in aeolian transport models // Environmental Modelling & Software. 2004. V. 19. № 2. P. 93–112.
  12. Nikuradse J. Laws of flow in rough pipes // National advisory committee for aeronautics. Washington, 1950. 42 p.
  13. Baas J.H., Best J.L., Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud–sand) sediment flows. Sedimentology. 2011. V. 58, Iss. 7. P. 1953–1987.
  14. Shao Y. Physics and modeling of wind erosion. Sprin ger Science & Business Media. 2008. 452 p.
  15. Hua Lu. An integrated wind erosion modeling system with emphasis on dust emission and transport // A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, School of Mathematics The University of New South Wales Sydney, Australia, Mathematical Science. 1999. 185 p.
  16. Kenneth Pye, Haim Tsoar. Aeolian Sand and Sand Dunes. Berlin. Heidelberg: Springer, 2009. 458 p.
  17. Бютнер Э. К. Динамика приповерхностного слоя воздуха Л.: Гидрометеоиздат, 1978. 158 с.
  18. Chou Yi Ju, Fringer Oliver B. A model for the simulation of coupled flow bed form evolution in turbulent flows // J. Geophys. Res. 2010. V. 115. № C10.
  19. Charru F. Instabilités hydrodynamiques. Savoirs actuels: EDP Sciences/CNRS edition, 2007. 386 p.
  20. Bagnold R. A. The physics of blown sand and desert dunes. New York, 1973. 263 p.
  21. Гольдштик М. А. Процессы переноса в зернистом слое. Новосибрск, 1984. 164 с.
  22. Кутателадзе С. С. Основы теории теплообмена. Изд. 5-е перераб. и доп. М.: Атомиздат, 1979. 416 с.
  23. Горчаков Г. И., Карпов А. В., Копейкин В. М., Злобин И. А., Бунтов Д. В., Соколов А. В. Исследование динамики сальтирующих песчинок на опустыненных территориях // ДАН. 2013. Т. 452. № 6. С. 669–676
  24. Малиновская Е. А. Модель отрыва песчаной частицы ветром // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 5. С. 588–596.
  25. Семенов О. Е. Введение в экспериментальную метеорологию и климатологию песчаных бурь. Алматы, 2011. 580 с.
  26. Martin R. L., Kok J. F. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress // Science advances. 2017. V. 3. № 6. e1602569.
  27. Yang Y. Y. et al. Aerodynamic grain-size distribution of blown sand // Icarus. 2018.
  28. Day M., Kocurek G. Observations of an aeolian landscape: From surface to orbit in Gale Crater // Icarus. 2016. V. 280. P. 37–71.
  29. Lorenz R. D., Zimbelman J. R. Dune Worlds: How Windblown Sand Shapes Planetary Landscapes. Springer, 2014. 308p.



Abstract - 201

PDF (Russian) - 774




  • There are currently no refbacks.

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies