Vertical propagation acoustic-gravity waves from atmospheric fronts into the upper atmosphere

Cover Page

Cite item

Full Text

Abstract

Using experimental observations of atmospheric pressure variations on the Earth’s surface recorded with a network of 4 microbarographs located in the Moscow region during the passage of an atmospheric front, empirical approximations of oscillations of atmospheric pressure field were constructed. The obtained approximating functions were used as the lower boundary condition for the numerical simulation of acoustic-gravity wave propagation to the upper atmosphere from the source in the lower troposphere. Estimates of the amplitude of temperature disturbances in the upper atmosphere caused by iacoustic gravity waves from the atmospheric front are given. The obtained estimates for the temperature disturbance amplitude take values around 170 K. The amplitude of temperature disturbances in the upper atmosphere, caused by background variations of pressure on the Earth's surface, is estimated at 4-5 K.

About the authors

Y. A. Kurdyaeva

Immanuel Kant Baltic Federal University; KB Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Science

Author for correspondence.
Email: yakurdyaeva@gmail.com
Russian Federation, A. Nevskogo Street, 14, Kaliningrad, 236041; Pionerskaya Street, 61, Kaliningrad, 236016

S. N. Kulichkov

Obukhov Institute of Atmospheric Physics, Russian Academy of Science; Moscow State University

Email: yakurdyaeva@gmail.com

Faculty of Physics

Russian Federation, Pyzhevsky Avenue, 3, Moscow, 119017; Leninskiye gory, d. 1, str. 2, Moscow, 119991

S. P. Kshevetskii

Obukhov Institute of Atmospheric Physics, Russian Academy of Science

Email: yakurdyaeva@gmail.com
Russian Federation, Pyzhevsky Avenue, 3, Moscow, 119017

O. P. Borchevkina

Immanuel Kant Baltic Federal University; KB Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Science

Email: yakurdyaeva@gmail.com
Russian Federation, A. Nevskogo Street, 14, Kaliningrad, 236041; Pionerskaya Street, 61, Kaliningrad, 236016

E. V. Golikova

Obukhov Institute of Atmospheric Physics, Russian Academy of Science

Email: yakurdyaeva@gmail.com
Russian Federation, Pyzhevsky Avenue, 3, Moscow, 119017

References

  1. Blanc E., Farges T., Pichon A. Le et al. Ten year observations of gravity waves from thunderstorms in western Africa // Journal of Geophysical Research: Atmospheres. 2014. V. 119. P. 6409–6418.
  2. Pierce A.D., Coroniti S.C. A mechanism for the generation of acoustic-gravity waves during thunderstorm formation // Nature. 1966. V. 210. P. 1209–1210.
  3. Fritts D.C., Alexander M.J. Gravity wave dynamics and effects in the middle atmosphere // Rev. Geophys. 2003. V. 41. № 1. P. 1003.
  4. Fritts D.C., Vadas S.L., Mean K. et al. Wan and variable forcing of the middle atmosphere by gravity waves // J. Atmos. Sol.-Terr. Phys. 2006. V. 68. P. 247–265.
  5. Ploogonven R., Snyder Ch. Inertial Gravity Waves Spontaneously Generated by Jets and Fronts. Part I: Different Baroclinic Life Cycles // J. of the Atmospheric Sciences. 2007. V. 64. P. 2502–2520.
  6. Plougonven R., Zhang F. Internal gravity waves from atmospheric jets and fronts // Rev. Geophys. 2014. V. 52. P. 1–37.
  7. Medvedev A.S., Gavrilov N.M. The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere // J. Atmos. Terr. Phys. 1995. V. 57. P. 1221–31.
  8. Balachandran N.K. Gravity waves from thunder- storms // Monthly weather review. 1980. V. 108. P. 804–816.
  9. Alexander M., May P., Beres J. Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment // J. Geophys. research. 2004. V. 109. P. 1–11.
  10. Miller D. V. Thunderstorm induced gravity waves as a potential hazard to commercial aircraft //Presented at the American Meteorological Society 79th Annual conference, American Meteorological Society. 1999.
  11. Fovell R., Durran D., Holton J.R. Numerical simulation of convectively generated stratospheric gravity waves // J. of the Atmospheric Sciences. 1992. V. 49(16). P. 1427–42.
  12. Kurdyaeva Y.A., Kshevetskii S.P., Gavrilov N.M. et al. Correct Boundary Conditions for the High-Resolution Model of Nonlinear Acoustic-Gravity Waves Forced by Atmospheric Pressure Variations // Pure Appl. Geophys. 2018. V. 175. P. 3639–3652. doi: 10.1007/s00024-018-1906-x
  13. Kshevetskii S.P. Numerical simulation of nonlinear internal gravity waves // Comp.Math. Math.Phys. 2001c. V. 41. P. 1777–1791.
  14. Kshevetskii S.P. Modeling of propagation of internal gravity waves in gases // Comput. Math.Math. Phys. 2001a. V. 41 (2). P. 273–288.
  15. Kshevetskii S.P. Internal gravity waves in nonexponentially density-stratified fluids // Comp. Math. Math. Phys. 2002. V. 42(10). P. 1510–1521.
  16. Kshevetskii S.P. Analytical and numerical investigation of nonlinear internal gravity waves // Nonlinear Pro- cess. Geophys. 2001b. V. 8. P 37–53.
  17. Snively J.B., Pasko V.B. Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes // Geophys. Res. Lett. 2003. V. 30(24). P. 2254. doi: 10.1029/2003GL018436
  18. Кшевецкий С.П., Куличков С.Н. Влияние внутренних гравитационных волн от конвективных облаков на атмосферное давление и пространственное распределение возмущений температуры/ / Изв. рАН. Физика атмосферы и океана. 2015. т. 51. № 1. C. 52–59.
  19. Куличков С.Н., Цыбульская Н.Д., Чунчузов И.П. и др. Некоторые результаты регистрации внутренних гравитационных волн от атмосферных фронтов в московском регионе // Изв. РАН. Физика атмосферы и океана. 2017. т. 53. № 4. C. 455–469.
  20. Access to GES DISC data requires all users to be registered with the Earthdata, 2018. https://disc.gsfc.nasa. gov/ (Accessed 1 August 2018).
  21. Погосян X.П. Циклоны. Л.: Гидрометеоиздат, 1976. 148 с.
  22. AtmoSym Model of Atmospheric Processes, 2016. http://atmos.kantiana.ru/ (Accessed 20 October 2018).
  23. Kshevetskii S.P., Gavrilov N.M. Vertical propagation, breaking, and effects of nonlinear gravity waves in the atmosphere // J. Atmos. Solar-Terr. Phys. 2005. V. 67. P. 1014–1030.
  24. Воеводин Вл.В., Жуматий С.А. и др. Практика суперкомпьютера «Ломоносов» // Открытые системы. — Москва: Издательский дом «Открытые системы». 2012. № 7. С. 36–39.
  25. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 Empirical model of the atmosphere: statistical comparisons and scientific Issues // J. Geophys. Res. 2002. V. 107(A12). P. 1468. doi: 10.1029/2002JA009430

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies